IDEAS home Printed from
   My bibliography  Save this article

Robustness and sensitivity analysis of risk measurement procedures


  • Rama Cont
  • Romain Deguest
  • Giacomo Scandolo


Measuring the risk of a financial portfolio involves two steps: estimating the loss distribution of the portfolio from available observations and computing a 'risk measure' that summarizes the risk of the portfolio. We define the notion of 'risk measurement procedure', which includes both of these steps, and introduce a rigorous framework for studying the robustness of risk measurement procedures and their sensitivity to changes in the data set. Our results point to a conflict between the subadditivity and robustness of risk measurement procedures and show that the same risk measure may exhibit quite different sensitivities depending on the estimation procedure used. Our results illustrate, in particular, that using recently proposed risk measures such as CVaR/expected shortfall leads to a less robust risk measurement procedure than historical Value-at-Risk. We also propose alternative risk measurement procedures that possess the robustness property.

Suggested Citation

  • Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
  • Handle: RePEc:taf:quantf:v:10:y:2010:i:6:p:593-606 DOI: 10.1080/14697681003685597

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Cyril Caillault, Dominique Guégan, 2009. "Forecasting VaR and Expected Shortfall Using Dynamical Systems: A Risk Management Strategy," Frontiers in Finance and Economics, SKEMA Business School, vol. 6(1), pages 26-50, April.
    2. Dominique Guégan, 2007. "Global and local stationary modelling in finance : theory and empirical evidence," Documents de travail du Centre d'Economie de la Sorbonne b07053, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Cyril Caillault & Dominique Guegan, 2005. "Empirical estimation of tail dependence using copulas: application to Asian markets," Quantitative Finance, Taylor & Francis Journals, vol. 5(5), pages 489-501.
    4. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    5. Granger, Clive W.J. & Terasvirta, Timo & Patton, Andrew J., 2006. "Common factors in conditional distributions for bivariate time series," Journal of Econometrics, Elsevier, vol. 132(1), pages 43-57, May.
    6. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    7. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    8. Fermanian, Jean-David, 2005. "Goodness-of-fit tests for copulas," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 119-152, July.
    9. Gombay, Edit & Horváth, Lajos, 1996. "On the Rate of Approximations for Maximum Likelihood Tests in Change-Point Models," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 120-152, January.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:10:y:2010:i:6:p:593-606. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.