IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Risk measures for Skew Normal mixtures

  • Bernardi, Mauro

Finite mixtures of Skew distributions have become increasingly popular in the last few years as a flexible tool for handling data displaying several different characteristics such as multimodality, asymmetry and fat-tails. Examples of such data can be found in financial and actuarial applications as well as biological and epidemiological analysis. In this paper we will show that a convex linear combination of multivariate Skew Normal mixtures can be represented as finite mixtures of univariate Skew Normal distributions. This result can be useful in modeling portfolio returns where the evaluation of extremal events is of great interest. We provide analytical formula for different risk measures like the Value-at-Risk and the Expected Shortfall probability.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/39828/1/MPRA_paper_39828.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 39828.

as
in new window

Length:
Date of creation: 2012
Date of revision:
Handle: RePEc:pra:mprapa:39828
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
  2. Carlo Acerbi & Dirk Tasche, 2001. "On the coherence of Expected Shortfall," Papers cond-mat/0104295, arXiv.org, revised May 2002.
  3. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
  4. Bernardi, Mauro & Maruotti, Antonello & Lea, Petrella, 2012. "Skew mixture models for loss distributions: a Bayesian approach," MPRA Paper 39826, University Library of Munich, Germany.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:39828. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.