IDEAS home Printed from https://ideas.repec.org/p/zbw/vfsc16/145493.html
   My bibliography  Save this paper

A note on optimal portfolios under regime-switching

Author

Listed:
  • Haas, Markus

Abstract

This paper extends the stochastic dominance rules for normal mixture distributions derived by Levy and Kaplanski (2015). First, the portfolios under consideration are allowed to follow different regime-switching processes. Second, the results are extended from second- to fourth-order stochastic dominance, which is known to be closely related to kurtosis aversion in financial markets and allows to compare mixture distributions with the same overall variance. In particular, when a risk-free asset is available, checking for fourth-order stochastic dominance turns out to amount to a comparison of the regime-specific and overall Sharpe ratios of the portfolios under consideration.

Suggested Citation

  • Haas, Markus, 2016. "A note on optimal portfolios under regime-switching," VfS Annual Conference 2016 (Augsburg): Demographic Change 145493, Verein für Socialpolitik / German Economic Association.
  • Handle: RePEc:zbw:vfsc16:145493
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/145493/1/VfS_2016_pid_6284.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    2. EECKHOUDT, Louis, 2012. "Beyond risk aversion: why, how and what's next?," LIDAM Reprints CORE 2514, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Taboga, Marco, 2005. "Portfolio selection with two-stage preferences," Finance Research Letters, Elsevier, vol. 2(3), pages 152-164, September.
    4. Brad Case & Massimo Guidolin & Yildiray Yildirim, 2014. "Markov Switching Dynamics in REIT Returns: Univariate and Multivariate Evidence on Forecasting Performance," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 42(2), pages 279-342, June.
    5. Louis Eeckhoudt & Harris Schlesinger, 2006. "Putting Risk in Its Proper Place," American Economic Review, American Economic Association, vol. 96(1), pages 280-289, March.
    6. Massimo Guidolin & Allan Timmermann, 2006. "An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 1-22, January.
    7. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Working Papers 415, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    8. Louis Eeckhoudt, 2012. "Beyond Risk Aversion: Why, How and What's Next?*," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 37(2), pages 141-155, September.
    9. Bae, Geum Il & Kim, Woo Chang & Mulvey, John M., 2014. "Dynamic asset allocation for varied financial markets under regime switching framework," European Journal of Operational Research, Elsevier, vol. 234(2), pages 450-458.
    10. Bernardi, Mauro, 2013. "Risk measures for skew normal mixtures," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1819-1824.
    11. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    12. Georges Dionne (ed.), 2013. "Handbook of Insurance," Springer Books, Springer, edition 2, number 978-1-4614-0155-1, April.
    13. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Advances in Econometrics, in: Missing Data Methods: Time-Series Methods and Applications, pages 1-86, Emerald Group Publishing Limited.
    14. John S. Chipman, 1973. "The Ordering of Portfolios in Terms of Mean and Variance," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 40(2), pages 167-190.
    15. Otiniano, C.E.G. & Rathie, P.N. & Ozelim, L.C.S.M., 2015. "On the identifiability of finite mixture of Skew-Normal and Skew-t distributions," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 103-108.
    16. Levy, Moshe & Kaplanski, Guy, 2015. "Portfolio selection in a two-regime world," European Journal of Operational Research, Elsevier, vol. 242(2), pages 514-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhipeng, Yan & Shenghong, Li, 2018. "Hedge ratio on Markov regime-switching diagonal Bekk–Garch model," Finance Research Letters, Elsevier, vol. 24(C), pages 49-55.
    2. Shi, Yanlin, 2022. "A closed-form estimator for the Markov switching in mean model," Finance Research Letters, Elsevier, vol. 44(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giampietro, Marta & Guidolin, Massimo & Pedio, Manuela, 2018. "Estimating stochastic discount factor models with hidden regimes: Applications to commodity pricing," European Journal of Operational Research, Elsevier, vol. 265(2), pages 685-702.
    2. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
    3. Pami Dua & Divya Tuteja, 2021. "Regime Shifts in the Behaviour of International Currency and Equity Markets: A Markov-Switching Analysis," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 309-336, December.
    4. Haas, Markus & Liu, Ji-Chun, 2015. "Theory for a Multivariate Markov--switching GARCH Model with an Application to Stock Markets," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112855, Verein für Socialpolitik / German Economic Association.
    5. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    6. Matteo Barigozzi & Daniele Massacci, 2022. "Modelling Large Dimensional Datasets with Markov Switching Factor Models," Papers 2210.09828, arXiv.org, revised Dec 2024.
    7. Platanakis, Emmanouil & Sakkas, Athanasios & Sutcliffe, Charles, 2019. "Harmful diversification: Evidence from alternative investments," The British Accounting Review, Elsevier, vol. 51(1), pages 1-23.
    8. Pedro Correia S. Bezerra & Pedro Henrique M. Albuquerque, 2017. "Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels," Computational Management Science, Springer, vol. 14(2), pages 179-196, April.
    9. Christian Gollier & James Hammitt & Nicolas Treich, 2013. "Risk and choice: A research saga," Journal of Risk and Uncertainty, Springer, vol. 47(2), pages 129-145, October.
    10. Guidolin, Massimo & Pedio, Manuela, 2017. "Identifying and measuring the contagion channels at work in the European financial crises," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 117-134.
    11. Yizhan Shu & Chenyu Yu & John M. Mulvey, 2024. "Downside risk reduction using regime-switching signals: a statistical jump model approach," Journal of Asset Management, Palgrave Macmillan, vol. 25(5), pages 493-507, September.
    12. Loubergé, Henri & Malevergne, Yannick & Rey, Béatrice, 2020. "New Results for additive and multiplicative risk apportionment," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 140-151.
    13. Erik Kole & Dick Dijk, 2017. "How to Identify and Forecast Bull and Bear Markets?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 120-139, January.
    14. Danau, Daniel, 2020. "Prudence and preference for flexibility gain," European Journal of Operational Research, Elsevier, vol. 287(2), pages 776-785.
    15. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).
    16. Guidolin, Massimo & Orlov, Alexei G. & Pedio, Manuela, 2017. "The impact of monetary policy on corporate bonds under regime shifts," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 176-202.
    17. Crainich, David & Eeckhoudt, Louis & Le Courtois, Olivier, 2017. "Health and portfolio choices: A diffidence approach," European Journal of Operational Research, Elsevier, vol. 259(1), pages 273-279.
    18. Gębka, Bartosz & Serwa, Dobromił, 2015. "The elusive nature of motives to trade: Evidence from international stock markets," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 147-157.
    19. Marta Giampietro & Massimo Guidolin & Manuela Pedio, 2015. "Can No-Arbitrage SDF Models with Regime Shifts Explain the Correlations Between Commodity, Stock, and Bond Returns?," BAFFI CAREFIN Working Papers 1619, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    20. Wasim Ahmad & N. Bhanumurthy & Sanjay Sehgal, 2015. "Regime dependent dynamics and European stock markets: Is asset allocation really possible?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(1), pages 77-107, February.

    More about this item

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc16:145493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vfsocea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.