IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2006i4p2192-2209.html
   My bibliography  Save this article

Stylized facts of financial time series and hidden semi-Markov models

Author

Listed:
  • Bulla, Jan
  • Bulla, Ingo

Abstract

No abstract is available for this item.

Suggested Citation

  • Bulla, Jan & Bulla, Ingo, 2006. "Stylized facts of financial time series and hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2192-2209, December.
  • Handle: RePEc:eee:csdana:v:51:y:2006:i:4:p:2192-2209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00237-4
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turner, C.M. & Startz, R. & Nelson, C.R., 1989. "The Markov Model Of Heteroskedasticity, Risk And Learning In The Stock Market," Working Papers 89-01, University of Washington, Department of Economics.
    2. Turner, Christopher M. & Startz, Richard & Nelson, Charles R., 1989. "A Markov model of heteroskedasticity, risk, and learning in the stock market," Journal of Financial Economics, Elsevier, vol. 25(1), pages 3-22, November.
    3. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    4. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    5. Tobias Rydén & Timo Teräsvirta & Stefan Åsbrink, 1998. "Stylized facts of daily return series and the hidden Markov model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 217-244.
    6. repec:adr:anecst:y:1995:i:40:p:04 is not listed on IDEAS
    7. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, October.
    8. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    9. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    10. Jun Yu, 2002. "Forecasting volatility in the New Zealand stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 12(3), pages 193-202.
    11. repec:adr:anecst:y:1995:i:40 is not listed on IDEAS
    12. Richard D. F. Harris & C. Coskun Küçüközmen, 2001. "The Empirical Distribution of UK and US Stock Returns," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 28(5-6), pages 715-740.
    13. C. W. J. Granger & Zhuanxin Ding, 1995. "Some Properties of Absolute Return: An Alternative Measure of Risk," Annals of Economics and Statistics, GENES, issue 40, pages 67-91.
    14. Jedrzej Bialkowski, 2004. "Modelling Returns on Stock Indices for Western and Central European Stock Exchanges - a Markov Switching Approach," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 2(2), pages 81-100.
    15. Cecchetti, Stephen G & Lam, Pok-sang & Mark, Nelson C, 1990. "Mean Reversion in Equilibrium Asset Prices," American Economic Review, American Economic Association, vol. 80(3), pages 398-418, June.
    16. G. D. Gettinby & C. D. Sinclair & D. M. Power & R. A. Brown, 2004. "An Analysis of the Distribution of Extreme Share Returns in the UK from 1975 to 2000," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5-6), pages 607-646.
    17. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    18. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    19. Robert W. Faff & David Hillier & Joseph Hillier, 2000. "Time Varying Beta Risk: An Analysis of Alternative Modelling Techniques," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 27(5&6), pages 523-554.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    2. Luca De Angelis & Leonard J. Paas, 2013. "A dynamic analysis of stock markets using a hidden Markov model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(8), pages 1682-1700, August.
    3. Gallo, Giampiero M. & Otranto, Edoardo, 2008. "Volatility spillovers, interdependence and comovements: A Markov Switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3011-3026, February.
    4. Milan Kumar Das & Anindya Goswami, 2018. "Testing of Binary Regime Switching Models using Squeeze Duration Analysis," Papers 1807.04393, arXiv.org, revised Aug 2018.
    5. Jan Bulla, 2010. "Hidden Markov models with t components. Increased persistence and other aspects," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 459-475.
    6. Elliott, Robert & Limnios, Nikolaos & Swishchuk, Anatoliy, 2013. "Filtering hidden semi-Markov chains," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2007-2014.
    7. Guglielmo D'Amico & Ada Lika & Filippo Petroni, 2018. "Indexed Markov Chains for financial data: testing for the number of states of the index process," Papers 1802.01540, arXiv.org.
    8. Wang, Ting & Bebbington, Mark, 2013. "Identifying anomalous signals in GPS data using HMMs: An increased likelihood of earthquakes?," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 27-44.
    9. repec:kap:compec:v:51:y:2018:i:2:d:10.1007_s10614-016-9596-x is not listed on IDEAS
    10. Haas, Markus, 2009. "Persistence in volatility, conditional kurtosis, and the Taylor property in absolute value GARCH processes," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1674-1683, August.
    11. Gianbiagio Curato & Fabrizio Lillo, 2013. "Modeling the coupled return-spread high frequency dynamics of large tick assets," Papers 1310.4539, arXiv.org.
    12. repec:eee:empfin:v:43:y:2017:i:c:p:1-32 is not listed on IDEAS
    13. Liu, Xinyi & Margaritis, Dimitris & Wang, Peiming, 2012. "Stock market volatility and equity returns: Evidence from a two-state Markov-switching model with regressors," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 483-496.
    14. Jo~ao Pedro Rodrigues do Carmo, 2018. "Modeling stock markets through the reconstruction of market processes," Papers 1803.06653, arXiv.org.
    15. repec:eee:finana:v:52:y:2017:i:c:p:316-332 is not listed on IDEAS
    16. Bulla, Jan & Bulla, Ingo & Nenadic, Oleg, 2010. "hsmm -- An R package for analyzing hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 611-619, March.
    17. Laurie Davies & Walter Kraemer, 2016. "Stylized Facts and Simulating Long Range Financial Data," CESifo Working Paper Series 5796, CESifo Group Munich.
    18. Ingmar Visser & Maarten Speekenbrink, 2014. "Comments on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 478-483, September.
    19. Holzmann, Hajo & Schwaiger, Florian, 2016. "Testing for the number of states in hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 318-330.
    20. repec:eee:pacfin:v:44:y:2017:i:c:p:127-149 is not listed on IDEAS
    21. repec:eee:stapro:v:138:y:2018:i:c:p:116-126 is not listed on IDEAS
    22. Arunangshu Biswas & Anindya Goswami & Ludger Overbeck, 2017. "Option Pricing in a Regime Switching Stochastic Volatility Model," Papers 1707.01237, arXiv.org, revised Jan 2018.
    23. Laurie Davies & Walter Kramer, 2016. "Stylized Facts and Simulating Long Range Financial Data," Papers 1612.05229, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2006:i:4:p:2192-2209. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.