IDEAS home Printed from https://ideas.repec.org/p/ete/kbiper/549545.html
   My bibliography  Save this paper

Modeling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions

Author

Listed:
  • Tom Reynkens
  • Roel Verbelen
  • Jan Beirlant
  • Katrien Antonio

Abstract

In risk analysis, a global fit that appropriately captures the body and the tail of the distribution of losses is essential. Modeling the whole range of the losses using a standard distribution is usually very hard and often impossible due to the specific characteristics of the body and the tail of the loss distribution. A possible solution is to combine two distributions in a splicing model: a light-tailed distribution for the body which covers light and moderate losses, and a heavy-tailed distribution for the tail to capture large losses. We propose a splicing model with a mixed Erlang (ME) distribution for the body and a Pareto distribution for the tail. This combines the flexibility of the ME distribution with the ability of the Pareto distribution to model extreme values. We extend our splicing approach for censored and/or truncated data. Relevant examples of such data can be found in financial risk analysis. We illustrate the flexibility of this splicing model using practical examples from risk measurement.

Suggested Citation

  • Tom Reynkens & Roel Verbelen & Jan Beirlant & Katrien Antonio, 2016. "Modeling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Working Papers of Department of Decision Sciences and Information Management, Leuven 549545, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
  • Handle: RePEc:ete:kbiper:549545
    as

    Download full text from publisher

    File URL: https://lirias.kuleuven.be/bitstream/123456789/549545/1/AFI_16110.pdf
    Download Restriction: intranet
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gordon E. Willmot & X. Sheldon Lin, 2011. "Risk modelling with the mixed Erlang distribution," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 27(1), pages 2-16, January.
    2. Fay, Michael P. & Shaw, Pamela A., 2010. "Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data: The interval R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i02).
    3. Gordon Willmot & Jae-Kyung Woo, 2007. "On the Class of Erlang Mixtures with Risk Theoretic Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 99-115.
    4. Vytaras Brazauskas & Andreas Kleefeld, 2016. "Modeling Severity and Measuring Tail Risk of Norwegian Fire Claims," North American Actuarial Journal, Taylor & Francis Journals, vol. 20(1), pages 1-16, January.
    5. Simon Lee & X. Lin, 2010. "Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 107-130.
    6. Lee, David & Li, Wai Keung & Wong, Tony Siu Tung, 2012. "Modeling insurance claims via a mixture exponential model combined with peaks-over-threshold approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 538-550.
    7. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    8. Pigeon, Mathieu & Denuit, Michel, 2011. "Composite Lognormal-Pareto model with random threshold," LIDAM Reprints ISBA 2011020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    10. Aban, Inmaculada B. & Meerschaert, Mark M. & Panorska, Anna K., 2006. "Parameter Estimation for the Truncated Pareto Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 270-277, March.
    11. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Multivariate mixtures of Erlangs for density estimation under censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 429-455, July.
    12. Verbelen, Roel & Gong, Lan & Antonio, Katrien & Badescu, Andrei & Lin, Sheldon, 2015. "Fitting Mixtures Of Erlangs To Censored And Truncated Data Using The Em Algorithm," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 729-758, September.
    13. Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Castro‐Camilo & Raphaël Huser & Håvard Rue, 2022. "Practical strategies for generalized extreme value‐based regression models for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
    2. Bae, Taehan & Miljkovic, Tatjana, 2024. "Loss modeling with the size-biased lognormal mixture and the entropy regularized EM algorithm," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 182-195.
    3. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2023. "Empirical risk assessment of maintenance costs under full-service contracts," European Journal of Operational Research, Elsevier, vol. 304(2), pages 476-493.
    4. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    5. Laudagé, Christian & Desmettre, Sascha & Wenzel, Jörg, 2019. "Severity modeling of extreme insurance claims for tariffication," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 77-92.
    6. Blostein, Martin & Miljkovic, Tatjana, 2019. "On modeling left-truncated loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 35-46.
    7. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    8. Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
    9. Lambert, Philippe, 2023. "Nonparametric density estimation and risk quantification from tabulated sample moments," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 177-189.
    10. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
    11. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation in Extreme Value Regression Models of Hedge Fund Tail Risks," Papers 2304.06950, arXiv.org.
    12. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bae, Taehan & Miljkovic, Tatjana, 2024. "Loss modeling with the size-biased lognormal mixture and the entropy regularized EM algorithm," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 182-195.
    2. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    3. Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
    4. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    5. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    6. Blostein, Martin & Miljkovic, Tatjana, 2019. "On modeling left-truncated loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 35-46.
    7. Luis Rincón & David J. Santana, 2022. "Ruin Probability for Finite Erlang Mixture Claims Via Recurrence Sequences," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2213-2236, September.
    8. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Multivariate mixtures of Erlangs for density estimation under censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 429-455, July.
    9. Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
    10. Laudagé, Christian & Desmettre, Sascha & Wenzel, Jörg, 2019. "Severity modeling of extreme insurance claims for tariffication," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 77-92.
    11. Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    12. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    13. Delong, Łukasz & Lindholm, Mathias & Wüthrich, Mario V., 2021. "Gamma Mixture Density Networks and their application to modelling insurance claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 240-261.
    14. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    15. David J. Santana & Juan González-Hernández & Luis Rincón, 2017. "Approximation of the Ultimate Ruin Probability in the Classical Risk Model Using Erlang Mixtures," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 775-798, September.
    16. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.
    17. Mingxing He & Jiahua Chen, 2022. "Strong consistency of the MLE under two-parameter Gamma mixture models with a structural scale parameter," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 125-154, March.
    18. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
    19. Yin, Cuihong & Sheldon Lin, X. & Huang, Rongtan & Yuan, Haili, 2019. "On the consistency of penalized MLEs for Erlang mixtures," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 12-20.
    20. Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.

    More about this item

    Keywords

    censoring; composite model; expectation-maximization algorithm; risk measurement; tail modeling;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ete:kbiper:549545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: library EBIB (email available below). General contact details of provider: https://feb.kuleuven.be/KBI .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.