IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i3d10.1007_s11009-021-09913-2.html
   My bibliography  Save this article

Ruin Probability for Finite Erlang Mixture Claims Via Recurrence Sequences

Author

Listed:
  • Luis Rincón

    (Facultad de Ciencias UNAM México)

  • David J. Santana

    (UJAT México)

Abstract

A new procedure to find the ultimate ruin probability in the Cramér-Lundberg risk model is presented for claims with a mixture of m Erlang distributions. The method requires to solve an m order linear recurrence sequence, which translates into finding the roots of an m-th degree polynomial and solving a system of m linear equations. We here study only the case when the roots of the polynomial are simple. A new approximation method for the ruin probability is also proposed based on this procedure and the simulation of a Poisson random variable. Several analytical expressions already known for the ruin probability in the case of Erlang claims, or mixtures of these, are recovered. Numerical results and plots from R programming are provided as examples.

Suggested Citation

  • Luis Rincón & David J. Santana, 2022. "Ruin Probability for Finite Erlang Mixture Claims Via Recurrence Sequences," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2213-2236, September.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09913-2
    DOI: 10.1007/s11009-021-09913-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09913-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09913-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gordon E. Willmot & X. Sheldon Lin, 2011. "Risk modelling with the mixed Erlang distribution," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 27(1), pages 2-16, January.
    2. Delbaen, F. & Haezendonck, J., 1987. "Classical risk theory in an economic environment," Insurance: Mathematics and Economics, Elsevier, vol. 6(2), pages 85-116, April.
    3. Dufresne, François & Gerber, Hans U. & Shiu, Elias S. W., 1991. "Risk Theory with the Gamma Process," ASTIN Bulletin, Cambridge University Press, vol. 21(2), pages 177-192, November.
    4. Chan, Wai-Sum & Yang, Hailiang & Zhang, Lianzeng, 2003. "Some results on ruin probabilities in a two-dimensional risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 345-358, July.
    5. Gordon Willmot & Jae-Kyung Woo, 2007. "On the Class of Erlang Mixtures with Risk Theoretic Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 99-115.
    6. Simon Lee & X. Lin, 2010. "Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 107-130.
    7. Verbelen, Roel & Gong, Lan & Antonio, Katrien & Badescu, Andrei & Lin, Sheldon, 2015. "Fitting Mixtures Of Erlangs To Censored And Truncated Data Using The Em Algorithm," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 729-758, September.
    8. Asmussen, S. & Binswanger, K., 1997. "Simulation of Ruin Probabilities for Subexponential Claims," ASTIN Bulletin, Cambridge University Press, vol. 27(2), pages 297-318, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    2. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Multivariate mixtures of Erlangs for density estimation under censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 429-455, July.
    3. David J. Santana & Juan González-Hernández & Luis Rincón, 2017. "Approximation of the Ultimate Ruin Probability in the Classical Risk Model Using Erlang Mixtures," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 775-798, September.
    4. Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    5. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.
    6. Mingxing He & Jiahua Chen, 2022. "Strong consistency of the MLE under two-parameter Gamma mixture models with a structural scale parameter," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 125-154, March.
    7. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
    8. Albrecher, Hansjörg & Cheung, Eric C.K. & Liu, Haibo & Woo, Jae-Kyung, 2022. "A bivariate Laguerre expansions approach for joint ruin probabilities in a two-dimensional insurance risk process," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 96-118.
    9. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    10. Bäuerle, Nicole & Blatter, Anja, 2011. "Optimal control and dependence modeling of insurance portfolios with Lévy dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 398-405, May.
    11. Gildas Ratovomirija, 2015. "Multivariate Stop loss Mixed Erlang Reinsurance risk: Aggregation, Capital allocation and Default risk," Papers 1501.07297, arXiv.org.
    12. Delong, Łukasz & Lindholm, Mathias & Wüthrich, Mario V., 2021. "Gamma Mixture Density Networks and their application to modelling insurance claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 240-261.
    13. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    14. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    15. Gong, Lan & Badescu, Andrei L. & Cheung, Eric C.K., 2012. "Recursive methods for a multi-dimensional risk process with common shocks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 109-120.
    16. Willmot, Gordon E. & Woo, Jae-Kyung, 2012. "On the analysis of a general class of dependent risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 134-141.
    17. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    18. Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
    19. Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
    20. Blostein, Martin & Miljkovic, Tatjana, 2019. "On modeling left-truncated loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 35-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09913-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.