Modeling loss data using mixtures of distributions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.insmatheco.2016.06.019
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Simon Lee & X. Lin, 2010. "Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 107-130.
- Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
- Pigeon, Mathieu & Denuit, Michel, 2011. "Composite Lognormal-Pareto model with random threshold," LIDAM Reprints ISBA 2011020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Resnick, Sidney I., 1997. "Discussion of the Danish Data on Large Fire Insurance Losses," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 139-151, May.
- Stuart Klugman & Jacques Rioux, 2006. "Toward a Unified Approach to Fitting Loss Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(1), pages 63-83.
- McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
- Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Multivariate mixtures of Erlangs for density estimation under censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 429-455, July.
- Verbelen, Roel & Gong, Lan & Antonio, Katrien & Badescu, Andrei & Lin, Sheldon, 2015. "Fitting Mixtures Of Erlangs To Censored And Truncated Data Using The Em Algorithm," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 729-758, September.
- Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tianxing Yan & Yi Lu & Himchan Jeong, 2024. "Dependence Modelling for Heavy-Tailed Multi-Peril Insurance Losses," Risks, MDPI, vol. 12(6), pages 1-17, June.
- Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017.
"Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions,"
Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
- Tom Reynkens & Roel Verbelen & Jan Beirlant & Katrien Antonio, 2016. "Modeling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 549545, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
- Tom Reynkens & Roel Verbelen & Jan Beirlant & Katrien Antonio, 2016. "Modeling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Working Papers of Department of Decision Sciences and Information Management, Leuven 549545, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
- Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
- Tatjana Miljkovic & Daniel Fernández, 2018. "On Two Mixture-Based Clustering Approaches Used in Modeling an Insurance Portfolio," Risks, MDPI, vol. 6(2), pages 1-18, May.
- Ruben Dewitte & Michel Dumont & Glenn Rayp & Peter Willemé, 2022.
"Unobserved heterogeneity in the productivity distribution and gains from trade,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(3), pages 1566-1597, August.
- Dewitte, Ruben & Dumont, Michel & Rayp, Glenn & Willemé, Peter, 2020. "Unobserved Heterogeneity in the Productivity Distribution and Gains From Trade," MPRA Paper 102711, University Library of Munich, Germany.
- Eling, Martin & Loperfido, Nicola, 2017. "Data breaches: Goodness of fit, pricing, and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 126-136.
- Alexeev Vitali & Ignatieva Katja & Liyanage Thusitha, 2021. "Dependence Modelling in Insurance via Copulas with Skewed Generalised Hyperbolic Marginals," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
- Despoina Makariou & Pauline Barrieu & George Tzougas, 2021. "A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures," Risks, MDPI, vol. 9(6), pages 1-25, June.
- Makariou, Despoina & Barrieu, Pauline & Tzougas, George, 2021. "A finite mixture modelling perspective for combining experts’ opinions with an application to quantile-based risk measures," LSE Research Online Documents on Economics 110763, London School of Economics and Political Science, LSE Library.
- Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
- Min Deng & Mostafa S. Aminzadeh, 2023. "Bayesian Inference for the Loss Models via Mixture Priors," Risks, MDPI, vol. 11(9), pages 1-27, August.
- Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
- Ignatieva, Katja & Landsman, Zinoviy, 2021. "A class of generalised hyper-elliptical distributions and their applications in computing conditional tail risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 437-465.
- Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
- Delong, Łukasz & Lindholm, Mathias & Wüthrich, Mario V., 2021. "Gamma Mixture Density Networks and their application to modelling insurance claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 240-261.
- Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
- Fung, Tsz Chai & Badescu, Andrei L. & Lin, X. Sheldon, 2019. "A class of mixture of experts models for general insurance: Theoretical developments," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 111-127.
- Richardson, Robert & Hartman, Brian, 2018. "Bayesian nonparametric regression models for modeling and predicting healthcare claims," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 1-8.
- Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
- Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
- Blostein, Martin & Miljkovic, Tatjana, 2019. "On modeling left-truncated loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 35-46.
- Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
- Naderi, Mehrdad & Hashemi, Farzane & Bekker, Andriette & Jamalizadeh, Ahad, 2020. "Modeling right-skewed financial data streams: A likelihood inference based on the generalized Birnbaum–Saunders mixture model," Applied Mathematics and Computation, Elsevier, vol. 376(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017.
"Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions,"
Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
- Tom Reynkens & Roel Verbelen & Jan Beirlant & Katrien Antonio, 2016. "Modeling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Working Papers of Department of Decision Sciences and Information Management, Leuven 549545, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Tom Reynkens & Roel Verbelen & Jan Beirlant & Katrien Antonio, 2016. "Modeling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 549545, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
- Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
- Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
- Blostein, Martin & Miljkovic, Tatjana, 2019. "On modeling left-truncated loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 35-46.
- S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
- Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
- Athanasios Sachlas & Takis Papaioannou, 2014. "Residual and Past Entropy in Actuarial Science and Survival Models," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 79-99, March.
- Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
- Rocco Roberto Cerchiara & Francesco Acri, 2020. "Estimating the Volatility of Non-Life Premium Risk Under Solvency II: Discussion of Danish Fire Insurance Data," Risks, MDPI, vol. 8(3), pages 1-19, July.
- Yin, Cuihong & Sheldon Lin, X. & Huang, Rongtan & Yuan, Haili, 2019. "On the consistency of penalized MLEs for Erlang mixtures," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 12-20.
- Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
- Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
- Luis Rincón & David J. Santana, 2022. "Ruin Probability for Finite Erlang Mixture Claims Via Recurrence Sequences," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2213-2236, September.
- Arthur Charpentier & Emmanuel Flachaire, 2021.
"Pareto Models for Risk Management,"
Dynamic Modeling and Econometrics in Economics and Finance, in: Gilles Dufrénot & Takashi Matsuki (ed.), Recent Econometric Techniques for Macroeconomic and Financial Data, pages 355-387,
Springer.
- Arthur Charpentier & Emmanuel Flachaire, 2019. "Pareto models for risk management," Working Papers hal-02423805, HAL.
- Arthur Charpentier & Emmanuel Flachaire, 2021. "Pareto Models for Risk Management," Post-Print hal-03186680, HAL.
- Arthur Charpentier & Emmanuel Flachaire, 2019. "Pareto models for risk management," Papers 1912.11736, arXiv.org.
- Jackie Li & Jia Liu, 2023. "Claims Modelling with Three-Component Composite Models," Risks, MDPI, vol. 11(11), pages 1-16, November.
- Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
- Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
- Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Multivariate mixtures of Erlangs for density estimation under censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 429-455, July.
- Delong, Łukasz & Lindholm, Mathias & Wüthrich, Mario V., 2021. "Gamma Mixture Density Networks and their application to modelling insurance claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 240-261.
- Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
More about this item
Keywords
Mixtures; Non-Gaussian distributions; EM algorithm; Risk measures; Danish Fire insurance losses;All these keywords.
JEL classification:
- C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
- C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
- C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:70:y:2016:i:c:p:387-396. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.