IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v25y2021i2p20n1.html
   My bibliography  Save this article

Dependence Modelling in Insurance via Copulas with Skewed Generalised Hyperbolic Marginals

Author

Listed:
  • Alexeev Vitali

    (Finance Discipline Group, UTS Business School, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Ignatieva Katja

    (School of Risk and Actuarial Studies, Business School, UNSW Australia, Sydney, NSW 2052, Australia)

  • Liyanage Thusitha

    (Portfolio and Market Risk Management Department, Commonwealth Bank of Australia, Sydney, NSW 2000, Australia)

Abstract

This paper investigates dependence among insurance claims arising from different lines of business (LoBs). Using bivariate and multivariate portfolios of losses from different LoBs, we analyse the ability of various copulas in conjunction with skewed generalised hyperbolic (GH) marginals to capture the dependence structure between individual insurance risks forming an aggregate risk of the loss portfolio. The general form skewed GH distribution is shown to provide the best fit to univariate loss data. When modelling dependency between LoBs using one-parameter and mixture copula models, we favour models that are capable of generating upper tail dependence, that is, when several LoBs have a strong tendency to exhibit extreme losses simultaneously. We compare the selected models in their ability to quantify risks of multivariate portfolios. By performing an extensive investigation of the in- and out-of-sample Value-at-Risk (VaR) forecasts by analysing VaR exceptions (i.e. observations of realised portfolio value that are greater than the estimated VaR), we demonstrate that the selected models allow to reliably quantify portfolio risk. Our results provide valuable insights with regards to the nature of dependence and fulfils one of the primary objectives of the general insurance providers aiming at assessing total risk of an aggregate portfolio of losses when LoBs are correlated.

Suggested Citation

  • Alexeev Vitali & Ignatieva Katja & Liyanage Thusitha, 2021. "Dependence Modelling in Insurance via Copulas with Skewed Generalised Hyperbolic Marginals," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
  • Handle: RePEc:bpj:sndecm:v:25:y:2021:i:2:p:20:n:1
    DOI: 10.1515/snde-2018-0094
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2018-0094
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2018-0094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    2. Denuit, Michel & Dhaene, Jan & Ribas, Carmen, 2001. "Does positive dependence between individual risks increase stop-loss premiums?," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 305-308, June.
    3. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    4. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    5. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012. "Skew mixture models for loss distributions: A Bayesian approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
    6. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    7. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    8. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    9. Lane, Morton N., 2000. "Pricing Risk Transfer Transactions1," ASTIN Bulletin, Cambridge University Press, vol. 30(2), pages 259-293, November.
    10. Merz, Michael & Wüthrich, Mario V. & Hashorva, Enkelejd, 2013. "Dependence modelling in multivariate claims run-off triangles," Annals of Actuarial Science, Cambridge University Press, vol. 7(1), pages 3-25, March.
    11. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    12. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    13. Bolancé, Catalina & Bahraoui, Zuhair & Artís, Manuel, 2014. "Quantifying the risk using copulae with nonparametric marginals," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 46-56.
    14. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    15. Joe, H., 1993. "Parametric Families of Multivariate Distributions with Given Margins," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 262-282, August.
    16. Alemany, Ramon & Bolancé, Catalina & Guillén, Montserrat, 2013. "A nonparametric approach to calculating value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 255-262.
    17. Ignatieva, Katja & Landsman, Zinoviy, 2015. "Estimating the tails of loss severity via conditional risk measures for the family of symmetric generalised hyperbolic distributions," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 172-186.
    18. Paul Embrechts, 2009. "Copulas: A Personal View," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 639-650, September.
    19. Bolance, Catalina & Guillen, Montserrat & Pelican, Elena & Vernic, Raluca, 2008. "Skewed bivariate models and nonparametric estimation for the CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 386-393, December.
    20. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    21. Lee, Simon C.K. & Lin, X. Sheldon, 2012. "Modeling Dependent Risks with Multivariate Erlang Mixtures," ASTIN Bulletin, Cambridge University Press, vol. 42(1), pages 153-180, May.
    22. Ole Eiler Barndorff‐Nielsen & Robert Stelzer, 2005. "Absolute Moments of Generalized Hyperbolic Distributions and Approximate Scaling of Normal Inverse Gaussian Lévy Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(4), pages 617-637, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Indranil Ghosh & Dalton Watts & Subrata Chakraborty, 2022. "Modeling Bivariate Dependency in Insurance Data via Copula: A Brief Study," JRFM, MDPI, vol. 15(8), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    2. Ignatieva, Katja & Landsman, Zinoviy, 2021. "A class of generalised hyper-elliptical distributions and their applications in computing conditional tail risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 437-465.
    3. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    4. Eling, Martin & Loperfido, Nicola, 2017. "Data breaches: Goodness of fit, pricing, and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 126-136.
    5. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    6. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    7. Katja Ignatieva & Eckhard Platen, 2010. "Modelling Co-movements and Tail Dependency in the International Stock Market via Copulae," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(3), pages 261-302, September.
    8. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    9. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    10. Katja Ignatieva & Natalia Ponomareva, 2017. "Commodity currencies and commodity prices: modelling static and time-varying dependence," Applied Economics, Taylor & Francis Journals, vol. 49(15), pages 1491-1512, March.
    11. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    12. Bolancé, Catalina & Bahraoui, Zuhair & Artís, Manuel, 2014. "Quantifying the risk using copulae with nonparametric marginals," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 46-56.
    13. Ramon Alemany & Catalina Bolance & Montserrat Guillen, 2014. "Accounting for severity of risk when pricing insurance products," Working Papers 2014-05, Universitat de Barcelona, UB Riskcenter.
    14. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2013, January-A.
    15. Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
    16. Douadia Bougherara & Laurent Piet, 2018. "On the role of probability weighting on WTP for crop insurance with and without yield skewness," Working Papers hal-02790605, HAL.
    17. Eling, Martin & Wirfs, Jan, 2019. "What are the actual costs of cyber risk events?," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1109-1119.
    18. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012. "Skew mixture models for loss distributions: A Bayesian approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
    19. Eling, Martin & Wirfs, Jan Hendrik, 2016. "Cyber Risk: Too Big to Insure? Risk Transfer Options for a mercurial risk class," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 59, number 59.
    20. Javed, Farrukh & Loperfido, Nicola & Mazur, Stepan, 2024. "Edgeworth expansions for multivariate random sums," Econometrics and Statistics, Elsevier, vol. 31(C), pages 66-80.

    More about this item

    Keywords

    copula; dependence modelling; insurance losses; skewed generalised hyperbolic distribution;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:25:y:2021:i:2:p:20:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.