IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v122y2025icp157-179.html
   My bibliography  Save this article

A generalized tail mean-variance model for optimal capital allocation

Author

Listed:
  • Yang, Yang
  • Wang, Guojing
  • Yao, Jing
  • Xie, Hengyue

Abstract

Capital allocation is a core task in financial and actuarial risk management. Some well-known capital allocation principles, such as the “Euler principle” and the “haircut principle”, have been widely used in the banking and insurance industry. The partitions of allocated capital not only serve as a buffer against potential losses but also provide certain risk pricing and performance measurement to the underlying risks. Dhaene et al. (2012) proposed a unified distance-minimizing capital allocation framework. Their objective function in the optimization only considers the magnitude of the loss function but not the variability. In this paper, we propose a general tail mean-variance (GTMV) model, which employs the Bregman divergences to construct distance-minimizing functions, and takes both the magnitude and the variability into account. We prove the existence and uniqueness of the optimal allocation and provide the general system of equations that characterizes the optimal solution. In this context, we further introduce the Mahalanobis tail mean-variance (MTMV) model and provide explicit distribution-free optimal allocation formulas, which cover many existing results as special cases. In particular, we derive the parametric analytical solutions for multivariate generalized hyperbolic distributed risks. For multivariate log-generalized hyperbolic distributed non-negative risks, we use the convex approximation method to obtain explicit solutions. We present two numerical examples showing the good performance of our optimal capital allocation rules. The first one analyzes the market risk of S&P 500 industry sector indices. We show that our optimal capital allocation framework is applicable to various scenario analyses and provides a performance measure for the indices and the financial market. The other example is based on insurance claims from an Australian insurance company, showing our approximate formulas are both robust and accurate.

Suggested Citation

  • Yang, Yang & Wang, Guojing & Yao, Jing & Xie, Hengyue, 2025. "A generalized tail mean-variance model for optimal capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 122(C), pages 157-179.
  • Handle: RePEc:eee:insuma:v:122:y:2025:i:c:p:157-179
    DOI: 10.1016/j.insmatheco.2025.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766872500040X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2025.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Song, Iickho & Lee, Seungwon, 2015. "Explicit formulae for product moments of multivariate Gaussian random variables," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 27-34.
    2. Robert, Christian Y., 2013. "Market Value Margin calculations under the Cost of Capital approach within a Bayesian chain ladder framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 216-229.
    3. Dhaene, Jan & Denuit, Michel & Vanduffel, Steven, 2009. "Correlation order, merging and diversification," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 325-332, December.
    4. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    5. Acharya, Viral V. & Cooley, Thomas & Richardson, Matthew & Walter, Ingo, 2010. "Manufacturing Tail Risk: A Perspective on the Financial Crisis of 2007–2009," Foundations and Trends(R) in Finance, now publishers, vol. 4(4), pages 247-325, April.
    6. Buch, Arne & Dorfleitner, Gregor & Wimmer, Maximilian, 2011. "Risk capital allocation for RORAC optimization," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3001-3009, November.
    7. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    8. Xu, Liang & Gao, Chunyan & Kou, Gang & Liu, Qinjun, 2017. "Comonotonic approximation to periodic investment problems under stochastic drift," European Journal of Operational Research, Elsevier, vol. 262(1), pages 251-261.
    9. Belles-Sampera, Jaume & Guillén, Montserrat & Santolino, Miguel, 2014. "GlueVaR risk measures in capital allocation applications," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 132-137.
    10. Dimitris Bertsimas & Akiko Takeda, 2015. "Optimizing over coherent risk measures and non-convexities: a robust mixed integer optimization approach," Computational Optimization and Applications, Springer, vol. 62(3), pages 613-639, December.
    11. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    12. Xiang Deng & Jing Yao, 2018. "On the property of multivariate generalized hyperbolic distribution and the Stein-type inequality," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(21), pages 5346-5356, November.
    13. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    14. Jeong, Himchan, 2020. "Testing For Random Effects In Compound Risk Models Via Bregman Divergence," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 777-798, September.
    15. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    16. Valdez, Emiliano A. & Dhaene, Jan & Maj, Mateusz & Vanduffel, Steven, 2009. "Bounds and approximations for sums of dependent log-elliptical random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 385-397, June.
    17. Zhou, Ming & Dhaene, Jan & Yao, Jing, 2018. "An approximation method for risk aggregations and capital allocation rules based on additive risk factor models," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 92-100.
    18. Xiong, Shi & Chen, Weidong, 2022. "A robust hybrid method using dynamic network analysis and Weighted Mahalanobis distance for modeling systemic risk in the international energy market," Energy Economics, Elsevier, vol. 109(C).
    19. Fry-McKibbin, Renée & Hsiao, Cody Yu-Ling & Martin, Vance L., 2021. "Measuring financial interdependence in asset markets with an application to eurozone equities," Journal of Banking & Finance, Elsevier, vol. 122(C).
    20. John R. Birge & L. Chavez-Bedoya, 2021. "Portfolio optimization under the generalized hyperbolic distribution: optimal allocation, performance and tail behavior," Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 199-219, February.
    21. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    22. Daniel Bauer & George Zanjani, 2016. "The Marginal Cost of Risk, Risk Measures, and Capital Allocation," Management Science, INFORMS, vol. 62(5), pages 1431-1457, May.
    23. Mark Kritzman & Yuanzhen Li, 2010. "Skulls, Financial Turbulence, and Risk Management," Financial Analysts Journal, Taylor & Francis Journals, vol. 66(5), pages 30-41, September.
    24. Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
    25. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    26. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    27. Kim, Joseph H.T. & Kim, So-Yeun, 2019. "Tail risk measures and risk allocation for the class of multivariate normal mean–variance mixture distributions," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 145-157.
    28. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    29. Yanwei Zhang & Vanja Dukic, 2013. "Predicting Multivariate Insurance Loss Payments Under the Bayesian Copula Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 891-919, December.
    30. Furman, Edward & Hackmann, Daniel & Kuznetsov, Alexey, 2020. "On log-normal convolutions: An analytical–numerical method with applications to economic capital determination," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 120-134.
    31. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard, 2016. "Correlations Between Insurance Lines Of Business: An Illusion Or A Real Phenomenon? Some Methodological Considerations," ASTIN Bulletin, Cambridge University Press, vol. 46(2), pages 225-263, May.
    32. Thomas Breuer & Imre Csiszár, 2016. "Measuring Distribution Model Risk," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 395-411, April.
    33. Sebastian Stockl & Michael Hanke, 2014. "Financial Applications of the Mahalanobis Distance," Applied Economics and Finance, Redfame publishing, vol. 1(2), pages 78-84, November.
    34. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    35. Fangda Liu & Ruodu Wang, 2021. "A Theory for Measures of Tail Risk," Mathematics of Operations Research, INFORMS, vol. 46(3), pages 1109-1128, August.
    36. Zaks, Yaniv & Frostig, Esther & Levikson, Benny, 2006. "Optimal Pricing of a Heterogeneous Portfolio for a Given Risk Level," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 161-185, May.
    37. Yousaf, Imran & Jareño, Francisco & Martínez-Serna, María-Isabel, 2023. "Extreme spillovers between insurance tokens and insurance stocks: Evidence from the quantile connectedness approach," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    38. Ignatieva, Katja & Landsman, Zinoviy, 2015. "Estimating the tails of loss severity via conditional risk measures for the family of symmetric generalised hyperbolic distributions," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 172-186.
    39. Xu, Maochao & Mao, Tiantian, 2013. "Optimal capital allocation based on the Tail Mean–Variance model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 533-543.
    40. Viral Acharya & Robert Engle & Matthew Richardson, 2012. "Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks," American Economic Review, American Economic Association, vol. 102(3), pages 59-64, May.
    41. Carole Bernard & Zhenyu Cui & Steven Vanduffel, 2017. "Impact of Flexible Periodic Premiums on Variable Annuity Guarantees," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(1), pages 63-86, January.
    42. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Jun & Wang, Ying, 2021. "Optimal capital allocation principles considering capital shortfall and surplus risks in a hierarchical corporate structure," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 329-349.
    2. Landsman, Zinoviy & Pat, Nika & Dhaene, Jan, 2013. "Tail Variance premiums for log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 441-447.
    3. Jinghui Chen & Edward Furman & X. Sheldon Lin, 2025. "Marginal expected shortfall: Systemic risk measurement under dependence uncertainty," Papers 2504.19953, arXiv.org.
    4. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    5. Wing Fung Chong & Runhuan Feng & Longhao Jin, 2023. "Holistic principle for risk aggregation and capital allocation," Annals of Operations Research, Springer, vol. 330(1), pages 21-54, November.
    6. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    7. Nawaf Mohammed & Edward Furman & Jianxi Su, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of Conditional Tail Expectation," Papers 2102.05003, arXiv.org, revised Aug 2021.
    8. Jaume Belles-Sampera & Montserrat Guillen & Miguel Santolino, 2023. "Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    9. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    10. Zhou, Ming & Dhaene, Jan & Yao, Jing, 2018. "An approximation method for risk aggregations and capital allocation rules based on additive risk factor models," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 92-100.
    11. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    12. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    13. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    14. Xu, Maochao & Mao, Tiantian, 2013. "Optimal capital allocation based on the Tail Mean–Variance model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 533-543.
    15. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    16. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    17. Xu, Maochao & Hu, Taizhong, 2012. "Stochastic comparisons of capital allocations with applications," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 293-298.
    18. Valdez, Emiliano A. & Dhaene, Jan & Maj, Mateusz & Vanduffel, Steven, 2009. "Bounds and approximations for sums of dependent log-elliptical random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 385-397, June.
    19. Kim, Joseph H.T. & Kim, So-Yeun, 2019. "Tail risk measures and risk allocation for the class of multivariate normal mean–variance mixture distributions," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 145-157.
    20. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:122:y:2025:i:c:p:157-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.