IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v122y2025icp157-179.html
   My bibliography  Save this article

A generalized tail mean-variance model for optimal capital allocation

Author

Listed:
  • Yang, Yang
  • Wang, Guojing
  • Yao, Jing
  • Xie, Hengyue

Abstract

Capital allocation is a core task in financial and actuarial risk management. Some well-known capital allocation principles, such as the “Euler principle” and the “haircut principle”, have been widely used in the banking and insurance industry. The partitions of allocated capital not only serve as a buffer against potential losses but also provide certain risk pricing and performance measurement to the underlying risks. Dhaene et al. (2012) proposed a unified distance-minimizing capital allocation framework. Their objective function in the optimization only considers the magnitude of the loss function but not the variability. In this paper, we propose a general tail mean-variance (GTMV) model, which employs the Bregman divergences to construct distance-minimizing functions, and takes both the magnitude and the variability into account. We prove the existence and uniqueness of the optimal allocation and provide the general system of equations that characterizes the optimal solution. In this context, we further introduce the Mahalanobis tail mean-variance (MTMV) model and provide explicit distribution-free optimal allocation formulas, which cover many existing results as special cases. In particular, we derive the parametric analytical solutions for multivariate generalized hyperbolic distributed risks. For multivariate log-generalized hyperbolic distributed non-negative risks, we use the convex approximation method to obtain explicit solutions. We present two numerical examples showing the good performance of our optimal capital allocation rules. The first one analyzes the market risk of S&P 500 industry sector indices. We show that our optimal capital allocation framework is applicable to various scenario analyses and provides a performance measure for the indices and the financial market. The other example is based on insurance claims from an Australian insurance company, showing our approximate formulas are both robust and accurate.

Suggested Citation

  • Yang, Yang & Wang, Guojing & Yao, Jing & Xie, Hengyue, 2025. "A generalized tail mean-variance model for optimal capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 122(C), pages 157-179.
  • Handle: RePEc:eee:insuma:v:122:y:2025:i:c:p:157-179
    DOI: 10.1016/j.insmatheco.2025.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766872500040X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2025.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Capital allocation; Bregman divergences; Tail mean-variance; Multivariate generalized hyperbolic distribution; Convex bound approximation;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:122:y:2025:i:c:p:157-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.