IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v42y2008i2p855-863.html
   My bibliography  Save this article

Some results on the CTE-based capital allocation rule

Author

Listed:
  • Dhaene, J.
  • Henrard, L.
  • Landsman, Z.
  • Vandendorpe, A.
  • Vanduffel, S.

Abstract

Tasche [Tasche, D., 1999. Risk contributions and performance measurement. Working paper, Technische Universität München] introduces a capital allocation principle where the capital allocated to each risk unit can be expressed in terms of its contribution to the conditional tail expectation (CTE) of the aggregate risk. Panjer [Panjer, H.H., 2002. Measurement of risk, solvency requirements and allocation of capital within financial conglomerates. Institute of Insurance and Pension Research, University of Waterloo, Research Report 01-15] derives a closed-form expression for this allocation rule in the multivariate normal case. Landsman and Valdez [Landsman, Z., Valdez, E., 2002. Tail conditional expectations for elliptical distributions. North American Actuarial J. 7 (4)] generalize Panjer's result to the class of multivariate elliptical distributions. In this paper we provide an alternative and simpler proof for the CTE-based allocation formula in the elliptical case. Furthermore, we derive accurate and easy computable closed-form approximations for this allocation formula for sums that involve normal and lognormal risks.

Suggested Citation

  • Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
  • Handle: RePEc:eee:insuma:v:42:y:2008:i:2:p:855-863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00102-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    2. Landsman, Zinoviy & Tsanakas, Andreas, 2006. "Stochastic ordering of bivariate elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 76(5), pages 488-494, March.
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    4. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    5. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    6. Anderson, Dale N., 1992. "A multivariate Linnik distribution," Statistics & Probability Letters, Elsevier, vol. 14(4), pages 333-336, July.
    7. Furman, Edward & Landsman, Zinoviy, 2005. "Risk capital decomposition for a multivariate dependent gamma portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 635-649, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, Open Access Journal, vol. 1(1), pages 1-20, March.
    2. Bolance, Catalina & Guillen, Montserrat & Pelican, Elena & Vernic, Raluca, 2008. "Skewed bivariate models and nonparametric estimation for the CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 386-393, December.
    3. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    4. Hirbod Assa & Manuel Morales & Hassan Omidi Firouzi, 2016. "On the Capital Allocation Problem for a New Coherent Risk Measure in Collective Risk Theory," Risks, MDPI, Open Access Journal, vol. 4(3), pages 1-20, August.
    5. Bargès, Mathieu & Cossette, Hélène & Marceau, Étienne, 2009. "TVaR-based capital allocation with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 348-361, December.
    6. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    7. Cossette, Hélène & Marceau, Etienne & Perreault, Samuel, 2015. "On two families of bivariate distributions with exponential marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 214-224.
    8. Landsman, Zinoviy & Pat, Nika & Dhaene, Jan, 2013. "Tail Variance premiums for log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 441-447.
    9. Cossette, Hélène & Côté, Marie-Pier & Marceau, Etienne & Moutanabbir, Khouzeima, 2013. "Multivariate distribution defined with Farlie–Gumbel–Morgenstern copula and mixed Erlang marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 560-572.
    10. Asimit, Alexandru V. & Furman, Edward & Tang, Qihe & Vernic, Raluca, 2011. "Asymptotics for risk capital allocations based on Conditional Tail Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 310-324.
    11. repec:gam:jrisks:v:5:y:2017:i:4:p:53-:d:112832 is not listed on IDEAS
    12. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    13. repec:eee:insuma:v:75:y:2017:i:c:p:105-116 is not listed on IDEAS
    14. Dhaene, Jan & Denuit, Michel & Vanduffel, Steven, 2009. "Correlation order, merging and diversification," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 325-332, December.
    15. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Tail conditional moments for elliptical and log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 179-188.
    16. Mathieu Bargès & Hélène Cossette & Etienne Marceau, 2009. "TVaR-based capital allocation with copulas," Working Papers hal-00431265, HAL.
    17. Valdez, Emiliano A. & Dhaene, Jan & Maj, Mateusz & Vanduffel, Steven, 2009. "Bounds and approximations for sums of dependent log-elliptical random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 385-397, June.
    18. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:2:p:855-863. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.