IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.12606.html
   My bibliography  Save this paper

Dependence bounds for the difference of stop-loss payoffs on the difference of two random variables

Author

Listed:
  • Hamza Hanbali
  • Jan Dhaene
  • Daniel Linders

Abstract

This paper considers the difference of stop-loss payoffs where the underlying is a difference of two random variables. The goal is to study whether the comonotonic and countermonotonic modifications of those two random variables can be used to construct upper and lower bounds for the expected payoff, despite the fact that the payoff function is neither convex nor concave. The answer to the central question of the paper requires studying the crossing points of the cdf of the original difference with the cdfs of its comonotonic and countermonotonic transforms. The analysis is supplemented with a numerical study of longevity trend bonds, using different mortality models and population data. The numerical study reveals that for these mortality-linked securities the three pairs of cdfs generally have unique pairwise crossing points. Under symmetric copulas, all crossing points can reasonably be approximated by the difference of the marginal medians, but this approximation is not necessarily valid for asymmetric copulas. Nevertheless, extreme dependence structures can give rise to bounds if the layers of the bond are selected to hedge tail risk. Further, the dependence uncertainty spread can be low if the layers are selected to hedge median risk, and, subject to a trade-off, to hedge tail risk as well.

Suggested Citation

  • Hamza Hanbali & Jan Dhaene & Daniel Linders, 2025. "Dependence bounds for the difference of stop-loss payoffs on the difference of two random variables," Papers 2508.12606, arXiv.org.
  • Handle: RePEc:arx:papers:2508.12606
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.12606
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.12606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.