IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3846-d1235391.html
   My bibliography  Save this article

Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem

Author

Listed:
  • Jaume Belles-Sampera

    (Department of Econometrics, Riskcenter-IREA, University of Barcelona, 08007 Barcelona, Spain)

  • Montserrat Guillen

    (Department of Econometrics, Riskcenter-IREA, University of Barcelona, 08007 Barcelona, Spain)

  • Miguel Santolino

    (Department of Econometrics, Riskcenter-IREA, University of Barcelona, 08007 Barcelona, Spain)

Abstract

The capital allocation framework presents capital allocation principles as solutions to particular optimisation problems and provides a general solution of the quadratic allocation problem via a geometric proof. However, the widely used haircut allocation principle is not reconcilable with that optimisation setting. Our study complements and generalises the unified capital allocation framework. The goal of the study is to contribute in the following two ways. First, we provide an alternative proof of the quadratic allocation problem based on the Lagrange multipliers method to reach the general solution, which complements the geometric proof. This alternative approach to solve the quadratic optimisation problem is, in our opinion, easier to follow and understand by researchers and practitioners. Second, we show that the haircut allocation principle can be accommodated by the optimisation setting with the quadratic optimisation criterion if one of the original conditions is relaxed. Two examples are provided to illustrate the accommodation of this allocation principle.

Suggested Citation

  • Jaume Belles-Sampera & Montserrat Guillen & Miguel Santolino, 2023. "Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3846-:d:1235391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3846/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kempf, Elisabeth & Luo, Mancy & Schäfer, Larissa & Tsoutsoura, Margarita, 2023. "Political ideology and international capital allocation," Journal of Financial Economics, Elsevier, vol. 148(2), pages 150-173.
    2. Buch, Arne & Dorfleitner, Gregor & Wimmer, Maximilian, 2011. "Risk capital allocation for RORAC optimization," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3001-3009, November.
    3. Gurrola-Perez, Pedro & Murphy, David, 2015. "Filtered historical simulation Value-at-Risk models and their competitors," Bank of England working papers 525, Bank of England.
    4. Cao, Wenbin & Duan, Xiaoman & Niu, Xu, 2023. "Access to finance, bureaucracy, and capital allocation efficiency," Journal of Economics and Business, Elsevier, vol. 125.
    5. Jan Dhaene & Mark Goovaerts & Rob Kaas, 2003. "Economic Capital Allocation Derived from Risk Measures," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(2), pages 44-56.
    6. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Proceedings 512, Federal Reserve Bank of Chicago.
    7. Grechuk, Bogdan, 2023. "Extended gradient of convex function and capital allocation," European Journal of Operational Research, Elsevier, vol. 305(1), pages 429-437.
    8. Zaks, Yaniv & Tsanakas, Andreas, 2014. "Optimal capital allocation in a hierarchical corporate structure," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 48-55.
    9. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    10. Boonen, Tim J. & Tsanakas, Andreas & Wüthrich, Mario V., 2017. "Capital allocation for portfolios with non-linear risk aggregation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 95-106.
    11. Balog, Dóra & Bátyi, Tamás László & Csóka, Péter & Pintér, Miklós, 2017. "Properties and comparison of risk capital allocation methods," European Journal of Operational Research, Elsevier, vol. 259(2), pages 614-625.
    12. Fabio Baione & Paolo Angelis & Ivan Granito, 2021. "Capital allocation and RORAC optimization under solvency 2 standard formula," Annals of Operations Research, Springer, vol. 299(1), pages 747-763, April.
    13. Zaks, Yaniv & Frostig, Esther & Levikson, Benny, 2006. "Optimal Pricing of a Heterogeneous Portfolio for a Given Risk Level," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 161-185, May.
    14. Xu, Maochao & Mao, Tiantian, 2013. "Optimal capital allocation based on the Tail Mean–Variance model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 533-543.
    15. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    16. Edward Furman & Yisub Kye & Jianxi Su, 2021. "A Reconciliation of the Top-Down and Bottom-Up Approaches to Risk Capital Allocations: Proportional Allocations Revisited," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(3), pages 395-416, July.
    17. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
    18. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    19. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    20. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    21. Boonen, Tim J. & Guillen, Montserrat & Santolino, Miguel, 2019. "Forecasting compositional risk allocations," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 79-86.
    22. Vali Asimit & Liang Peng & Ruodu Wang & Alex Yu, 2019. "An efficient approach to quantile capital allocation and sensitivity analysis," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1131-1156, October.
    23. Belles-Sampers, Jaume & Guillén, Montserrat & Santolino, Miguel, 2017. "Risk Quantification and Allocation Methods for Practitioners," University of Chicago Press Economics Books, University of Chicago Press, number 9789462984059.
    24. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    25. Patrice Gaillardetz & Emmanuel Osei Mireku, 2022. "Worst-Case Valuation of Equity-Linked Products Using Risk-Minimizing Strategies," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(1), pages 64-81, January.
    26. Giorgio Costa & Roy H. Kwon, 2020. "Generalized risk parity portfolio optimization: an ADMM approach," Journal of Global Optimization, Springer, vol. 78(1), pages 207-238, September.
    27. Tsanakas, Andreas, 2004. "Dynamic capital allocation with distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 223-243, October.
    28. Tsanakas, Andreas & Barnett, Christopher, 2003. "Risk capital allocation and cooperative pricing of insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 239-254, October.
    29. Hougaard, Jens Leth & Smilgins, Aleksandrs, 2016. "Risk capital allocation with autonomous subunits: The Lorenz set," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 151-157.
    30. Kang, Woo-Young & Poshakwale, Sunil, 2019. "A new approach to optimal capital allocation for RORAC maximization in banks," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 153-165.
    31. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jilber Urbina & Miguel Santolino & Montserrat Guillen, 2021. "Covariance Principle for Capital Allocation: A Time-Varying Approach," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
    2. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    3. Boonen, Tim J. & Guillen, Montserrat & Santolino, Miguel, 2019. "Forecasting compositional risk allocations," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 79-86.
    4. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    5. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    6. van Gulick, G. & De Waegenaere, A.M.B. & Norde, H.W., 2010. "Excess Based Allocation of Risk Capital," Other publications TiSEM f9231521-fea7-4524-8fea-8, Tilburg University, School of Economics and Management.
    7. Cai, Jun & Wang, Ying, 2021. "Optimal capital allocation principles considering capital shortfall and surplus risks in a hierarchical corporate structure," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 329-349.
    8. Stephen J. Mildenhall, 2017. "Actuarial Geometry," Risks, MDPI, vol. 5(2), pages 1-44, June.
    9. Boonen, Tim J. & Tsanakas, Andreas & Wüthrich, Mario V., 2017. "Capital allocation for portfolios with non-linear risk aggregation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 95-106.
    10. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    11. Gómez, Fabio & Tang, Qihe & Tong, Zhiwei, 2022. "The gradient allocation principle based on the higher moment risk measure," Journal of Banking & Finance, Elsevier, vol. 143(C).
    12. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    13. Boonen, T.J. & De Waegenaere, A.M.B. & Norde, H.W., 2012. "A Generalization of the Aumann-Shapley Value for Risk Capital Allocation Problems," Other publications TiSEM 2c502ef8-76f0-47f5-ab45-1, Tilburg University, School of Economics and Management.
    14. Millossovich, Pietro & Tsanakas, Andreas & Wang, Ruodu, 2024. "A theory of multivariate stress testing," European Journal of Operational Research, Elsevier, vol. 318(3), pages 851-866.
    15. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    16. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    17. Zaks, Yaniv & Tsanakas, Andreas, 2014. "Optimal capital allocation in a hierarchical corporate structure," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 48-55.
    18. Major, John A., 2018. "Distortion measures and homogeneous financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 82-91.
    19. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    20. Dóra Balog, 2017. "Capital Allocation in the Insurance Sector," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 16(3), pages 74-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3846-:d:1235391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.