IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1410.1101.html
   My bibliography  Save this paper

Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models

Author

Listed:
  • Rodrigo S. Targino
  • Gareth W. Peters
  • Pavel V. Shevchenko

Abstract

In this paper we assume a multivariate risk model has been developed for a portfolio and its capital derived as a homogeneous risk measure. The Euler (or gradient) principle, then, states that the capital to be allocated to each component of the portfolio has to be calculated as an expectation conditional to a rare event, which can be challenging to evaluate in practice. We exploit the copula-dependence within the portfolio risks to design a Sequential Monte Carlo Samplers based estimate to the marginal conditional expectations involved in the problem, showing its efficiency through a series of computational examples.

Suggested Citation

  • Rodrigo S. Targino & Gareth W. Peters & Pavel V. Shevchenko, 2014. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Papers 1410.1101, arXiv.org, revised Feb 2015.
  • Handle: RePEc:arx:papers:1410.1101
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1410.1101
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Walter R. Gilks & Carlo Berzuini, 2001. "Following a moving target—Monte Carlo inference for dynamic Bayesian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 127-146.
    3. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).
    4. Rosen, Dan & Saunders, David, 2010. "Risk factor contributions in portfolio credit risk models," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 336-349, February.
    5. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437.
    6. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    7. Dirk Tasche, 2007. "Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle," Papers 0708.2542, arXiv.org, revised Jun 2008.
    8. Philipp Arbenz & Mathieu Cambou & Marius Hofert, 2014. "An importance sampling approach for copula models in insurance," Papers 1403.4291, arXiv.org, revised Apr 2015.
    9. René Carmona & Jean-Pierre Fouque & Douglas Vestal, 2009. "Interacting particle systems for the computation of rare credit portfolio losses," Finance and Stochastics, Springer, vol. 13(4), pages 613-633, September.
    10. Nicolas Chopin, 2002. "Central Limit Theorem for Sequential Monte Carlo Methods and its Applications to Bayesian Inference," Working Papers 2002-44, Center for Research in Economics and Statistics.
    11. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Dynamic operational risk: modeling dependence and combining different sources of information," Papers 0904.4074, arXiv.org, revised Jul 2009.
    12. Thomas Siller, 2013. "Measuring marginal risk contributions in credit portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1915-1923, December.
    13. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    14. McLeish, Don L., 2010. "Bounded Relative Error Importance Sampling and Rare Event Simulation," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 40(01), pages 377-398, May.
    15. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, Open Access Journal, vol. 1(1), pages 1-20, March.
    16. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    17. Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
    18. Ostap Okhrin & Alexander Ristig, 2012. "Hierarchical Archimedean Copulae: The HAC Package," SFB 649 Discussion Papers SFB649DP2012-036, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gareth W. Peters & Efstathios Panayi & Francois Septier, 2015. "SMC-ABC methods for the estimation of stochastic simulation models of the limit order book," Papers 1504.05806, arXiv.org.
    2. repec:gam:jrisks:v:5:y:2017:i:4:p:53-:d:112832 is not listed on IDEAS
    3. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    4. Mélina Mailhot & Mhamed Mesfioui, 2016. "Multivariate TVaR-Based Risk Decomposition for Vector-Valued Portfolios," Risks, MDPI, Open Access Journal, vol. 4(4), pages 1-16, September.

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1410.1101. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.