IDEAS home Printed from https://ideas.repec.org/p/unm/umagsb/2013057.html
   My bibliography  Save this paper

Risk allocation under liquidity constraints

Author

Listed:
  • Csóka, P.

    (Externe publicaties SBE)

  • Herings, P.J.J.

    (Microeconomics & Public Economics)

Abstract

Risk allocation games are cooperative games that are used to attribute the risk of a financial entity to its divisions. In this paper, we extend the literature on risk allocation games by incorporating liquidity considerations. A liquidity policy specifies state-dependent liquidity requirements that a portfolio should obey. To comply with the liquidity policy, a financial entity may have to liquidate part of its assets, which is costly. The definition of a risk allocation game under liquidity constraints is not straight-forward, since the presence of a liquidity policy leads to externalities. We argue that the standard worst case approach should not be used here and present an alternative definition. We show that the resulting class of transferable utility games coincides with the class of totally balanced games. It follows from our results that also when taking liquidity considerations into account there is always a stable way to allocate

Suggested Citation

  • Csóka, P. & Herings, P.J.J., 2013. "Risk allocation under liquidity constraints," Research Memorandum 057, Maastricht University, Graduate School of Business and Economics (GSBE).
  • Handle: RePEc:unm:umagsb:2013057
    DOI: 10.26481/umagsb.2013057
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/ws/files/1425073/guid-60b0e744-11fe-4540-86b5-a0cca68ceafc-ASSET1.0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26481/umagsb.2013057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Csoka, Peter & Herings, P. Jean-Jacques & Koczy, Laszlo A., 2007. "Coherent measures of risk from a general equilibrium perspective," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2517-2534, August.
    2. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Csóka, Péter & Herings, P. Jean-Jacques & Kóczy, László Á., 2009. "Stable allocations of risk," Games and Economic Behavior, Elsevier, vol. 67(1), pages 266-276, September.
    4. Kim, Joseph H.T. & Hardy, Mary R., 2009. "A capital allocation based on a solvency exchange option," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 357-366, June.
    5. Bollen, P.W.L., 2002. "A formal ORM-to -UML mapping algorithm," Research Memorandum 016, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
    8. Homburg, Carsten & Scherpereel, Peter, 2008. "How should the cost of joint risk capital be allocated for performance measurement?," European Journal of Operational Research, Elsevier, vol. 187(1), pages 208-227, May.
    9. Lloyd S. Shapley, 1967. "On balanced sets and cores," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 14(4), pages 453-460.
    10. Carlo Acerbi & Giacomo Scandolo, 2008. "Liquidity risk theory and coherent measures of risk," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 681-692.
    11. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    12. Predtetchinski, Arkadi & Jean-Jacques Herings, P., 2004. "A necessary and sufficient condition for non-emptiness of the core of a non-transferable utility game," Journal of Economic Theory, Elsevier, vol. 116(1), pages 84-92, May.
    13. Umut Çetin & Robert A. Jarrow & Philip Protter, 2008. "Liquidity risk and arbitrage pricing theory," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 8, pages 153-183, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hevér, Judit, 2017. "A likviditás és a permanens árhatás szerepe a portfólióértékelésben [The role of liquidity policy and permanent price impact in portfolio valuation]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 594-611.
    2. Csóka, Péter & Hevér, Judit, 2018. "Portfolio valuation under liquidity constraints with permanent price impact," Finance Research Letters, Elsevier, vol. 26(C), pages 235-241.
    3. Dóra Balog, 2017. "Capital Allocation in the Insurance Sector," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 16(3), pages 74-97.
    4. Hougaard, Jens Leth & Smilgins, Aleksandrs, 2016. "Risk capital allocation with autonomous subunits: The Lorenz set," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 151-157.
    5. Balog, Dóra & Bátyi, Tamás László & Csóka, Péter & Pintér, Miklós, 2017. "Properties and comparison of risk capital allocation methods," European Journal of Operational Research, Elsevier, vol. 259(2), pages 614-625.
    6. Hevér, Judit, 2020. "A piaci likviditás és a szabályozás kapcsolatának vizsgálata általános egyensúlyelméleti modellkeretben [The effect of regulation on market liquidity: a general equilibrium approach]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 708-733.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dóra Balog & Tamás László Bátyi & Péter Csóka & Miklós Pintér, 2014. "Properties of risk capital allocation methods: Core Compatibility, Equal Treatment Property and Strong Monotonicity," CERS-IE WORKING PAPERS 1417, Institute of Economics, Centre for Economic and Regional Studies.
    2. Csóka, Péter, 2017. "Fair risk allocation in illiquid markets," Finance Research Letters, Elsevier, vol. 21(C), pages 228-234.
    3. Balog, Dóra & Bátyi, Tamás László & Csóka, Péter & Pintér, Miklós, 2017. "Properties and comparison of risk capital allocation methods," European Journal of Operational Research, Elsevier, vol. 259(2), pages 614-625.
    4. Csóka Péter & Pintér Miklós, 2016. "On the Impossibility of Fair Risk Allocation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(1), pages 143-158, January.
    5. Csóka, Péter & Bátyi, Tamás László & Pintér, Miklós & Balog, Dóra, 2011. "Tőkeallokációs módszerek és tulajdonságaik a gyakorlatban [Methods of capital allocation and their characteristics in practice]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 619-632.
    6. Kao, Lie-Jane, 2015. "A portfolio-invariant capital allocation scheme penalizing concentration risk," Economic Modelling, Elsevier, vol. 51(C), pages 560-570.
    7. Dóra Balog, 2010. "Risk based capital allocation," Proceedings of FIKUSZ '10, in: László Áron Kóczy (ed.),Proceedings of FIKUSZ 2010, pages 17-26, Óbuda University, Keleti Faculty of Business and Management.
    8. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    9. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    10. Gabriele Canna & Francesca Centrone & Emanuela Rosazza Gianin, 2021. "Capital Allocation Rules and the No-Undercut Property," Mathematics, MDPI, vol. 9(2), pages 1-13, January.
    11. Yang, Jian & Li, Jianbin, 2020. "Cooperative game with nondeterministic returns," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 123-140.
    12. Karl Michael Ortmann, 2016. "The link between the Shapley value and the beta factor," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(2), pages 311-325, November.
    13. Boonen, Tim J., 2017. "Risk Redistribution Games With Dual Utilities," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 303-329, January.
    14. Csóka, Péter & Herings, P. Jean-Jacques & Kóczy, László Á., 2009. "Stable allocations of risk," Games and Economic Behavior, Elsevier, vol. 67(1), pages 266-276, September.
    15. Dora Balog, 2011. "Capital allocation in financial institutions: the Euler method," CERS-IE WORKING PAPERS 1126, Institute of Economics, Centre for Economic and Regional Studies.
    16. Péter Csóka & P. Herings & László Kóczy, 2011. "Balancedness conditions for exact games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(1), pages 41-52, August.
    17. Dóra Balog, 2017. "Capital Allocation in the Insurance Sector," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 16(3), pages 74-97.
    18. Bernardi Mauro & Roy Cerqueti & Arsen Palestini, 2016. "Allocation of risk capital in a cost cooperative game induced by a modified Expected Shortfall," Papers 1608.02365, arXiv.org.
    19. van Gulick, G. & De Waegenaere, A.M.B. & Norde, H.W., 2010. "Excess Based Allocation of Risk Capital," Other publications TiSEM f9231521-fea7-4524-8fea-8, Tilburg University, School of Economics and Management.
    20. Kamil J. Mizgier & Joseph M. Pasia, 2016. "Multiobjective optimization of credit capital allocation in financial institutions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 801-817, December.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umagsb:2013057. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Willems or Leonne Portz (email available below). General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.