IDEAS home Printed from https://ideas.repec.org/p/has/discpr/0704.html
   My bibliography  Save this paper

Stable Allocations of Risk

Author

Listed:
  • Peter Csoka

    () (Department Economics, Universiteit of Maastricht)

  • P. Jean-Jacques Herings,

    () (Department of Economics, Universiteit Maastricht,)

  • Laszlo A. Koczy

    () (Department of Economics, Universiteit Maastricht,)

Abstract

Measuring risk can be axiomatized by the concept of coherent measures of risk. A risk environment specifies some individual portfolios' realization vectors and a coherent measure of risk. We consider sharing the risk of the aggregate portfolio by studying transferable utility cooperative games: risk allocation games. We show that the class of risk allocation games coincides with the class of totally balanced games. As a limit case the aggregate portfolio can have the same payoff in all states of nature. We prove that the class of risk allocation games with no aggregate uncertainty coincides with the class of exact games.

Suggested Citation

  • Peter Csoka & P. Jean-Jacques Herings, & Laszlo A. Koczy, 2007. "Stable Allocations of Risk," IEHAS Discussion Papers 0704, Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences.
  • Handle: RePEc:has:discpr:0704
    as

    Download full text from publisher

    File URL: http://econ.core.hu/file/download/MTDP/mtdp0704.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hans Reijnierse & Jean Derks, 1998. "Note On the core of a collection of coalitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(3), pages 451-459.
    2. Ehud Kalai & Eitan Zemel, 1980. "On Totally Balanced Games and Games of Flow," Discussion Papers 413, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Péter Csóka & P. Herings & László Kóczy, 2011. "Balancedness conditions for exact games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(1), pages 41-52, August.
    4. Legut, Jerzy, 1990. "On totally balanced games arising from cooperation in fair division," Games and Economic Behavior, Elsevier, vol. 2(1), pages 47-60, March.
    5. Pradeep Dubey & Lloyd S. Shapley, 1982. "Totally Balanced Games Arising from Controlled Programming Problems," UCLA Economics Working Papers 262, UCLA Department of Economics.
    6. Shapley, Lloyd S. & Shubik, Martin, 1969. "On market games," Journal of Economic Theory, Elsevier, vol. 1(1), pages 9-25, June.
    7. Csoka, Peter & Herings, P. Jean-Jacques & Koczy, Laszlo A., 2007. "Coherent measures of risk from a general equilibrium perspective," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2517-2534, August.
    8. Tijs, S.H. & Parthasarathy, T. & Potters, J.A.M. & Rajendra Prasad, V., 1984. "Permutation games : Another class of totally balanced games," Other publications TiSEM a7edfa18-6224-4be3-b677-5, Tilburg University, School of Economics and Management.
    9. Calleja, Pedro & Borm, Peter & Hendrickx, Ruud, 2005. "Multi-issue allocation situations," European Journal of Operational Research, Elsevier, vol. 164(3), pages 730-747, August.
    10. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    11. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    12. Predtetchinski, Arkadi & Jean-Jacques Herings, P., 2004. "A necessary and sufficient condition for non-emptiness of the core of a non-transferable utility game," Journal of Economic Theory, Elsevier, vol. 116(1), pages 84-92, May.
    13. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    14. Ehud Kalai & Eitan Zemel, 1980. "Generalized Network Problems Yielding Totally Balanced Games," Discussion Papers 425, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    15. Biswas, A. K. & Parthasarathy, T. & Potters, J. A. M. & Voorneveld, M., 1999. "Large Cores and Exactness," Games and Economic Behavior, Elsevier, vol. 28(1), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kao, Lie-Jane, 2015. "A portfolio-invariant capital allocation scheme penalizing concentration risk," Economic Modelling, Elsevier, vol. 51(C), pages 560-570.
    2. Péter Csóka & P. Herings & László Kóczy, 2011. "Balancedness conditions for exact games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(1), pages 41-52, August.
    3. Karl Michael Ortmann, 2016. "The link between the Shapley value and the beta factor," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(2), pages 311-325, November.
    4. Lohmann, E. & Borm, P. & Herings, P.J.J., 2012. "Minimal exact balancedness," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 127-135.
    5. Csóka, Péter & Herings, P. Jean-Jacques, 2014. "Risk allocation under liquidity constraints," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 1-9.
    6. Csóka Péter & Pintér Miklós, 2016. "On the Impossibility of Fair Risk Allocation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(1), pages 143-158, January.
    7. Dora Balog, 2011. "Capital allocation in financial institutions: the Euler method," IEHAS Discussion Papers 1126, Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences.
    8. Hougaard, Jens Leth & Smilgins, Aleksandrs, 2016. "Risk capital allocation with autonomous subunits: The Lorenz set," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 151-157.
    9. repec:eee:finlet:v:21:y:2017:i:c:p:228-234 is not listed on IDEAS
    10. Csóka, Péter & Jean-Jacques Herings, P. & Kóczy, László Á. & Pintér, Miklós, 2011. "Convex and exact games with non-transferable utility," European Journal of Operational Research, Elsevier, vol. 209(1), pages 57-62, February.
    11. repec:spr:compst:v:74:y:2011:i:1:p:41-52 is not listed on IDEAS
    12. Csóka, Péter & Bátyi, Tamás László & Pintér, Miklós & Balog, Dóra, 2011. "Tőkeallokációs módszerek és tulajdonságaik a gyakorlatban
      [Methods of capital allocation and their characteristics in practice]
      ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 619-632.
    13. Borrero, D.V. & Hinojosa, M.A. & Mármol, A.M., 2016. "DEA production games and Owen allocations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 921-930.
    14. Boonen, Tim J. & Tsanakas, Andreas & Wüthrich, Mario V., 2017. "Capital allocation for portfolios with non-linear risk aggregation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 95-106.
    15. Bernardi Mauro & Roy Cerqueti & Arsen Palestini, 2016. "Allocation of risk capital in a cost cooperative game induced by a modified Expected Shortfall," Papers 1608.02365, arXiv.org.
    16. Balog, Dóra & Bátyi, Tamás László & Csóka, Péter & Pintér, Miklós, 2017. "Properties and comparison of risk capital allocation methods," European Journal of Operational Research, Elsevier, vol. 259(2), pages 614-625.
    17. Csóka, Péter, 2017. "Fair risk allocation in illiquid markets," Finance Research Letters, Elsevier, vol. 21(C), pages 228-234.

    More about this item

    Keywords

    Coherent Measures of Risk; Risk Allocation Games; Totally Balanced Games; Exact Games;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:has:discpr:0704. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Adrienn Foldi). General contact details of provider: http://edirc.repec.org/data/iehashu.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.