IDEAS home Printed from
   My bibliography  Save this article

Liquidity risk theory and coherent measures of risk


  • Carlo Acerbi
  • Giacomo Scandolo


We discuss liquidity risk from a pure risk-theoretical point of view in the axiomatic context of coherent measures of risk. We propose a formalism for liquidity risk that is compatible with the axioms of coherency. We emphasize the difference between 'coherent risk measures' (CRM) ρ(X ) defined on portfolio values X as opposed to 'coherent portfolio risk measures' (CPRM) ρ(p) defined on the vector space of portfolios p, and we observe that in the presence of liquidity risk the value function on the space of portfolios is no longer necessarily linear. We propose a new nonlinear 'Value' function VL(p) that depends on a new notion of 'liquidity policy' L. The function VL(p) naturally arises from a general description of the impact that the microstructure of illiquid markets has when marking a portfolio to market. We discuss the consequences of the introduction of the function VL(p) in the coherency axioms and we study the properties induced on CPRMs. We show in particular that CPRMs are convex, finding a result that was proposed as a new axiom in the literature of so called 'convex measures of risk'. The framework we propose is not a model but rather a new formalism, in the sense that it is completely free from hypotheses on the dynamics of the market. We provide interpretation and characterization of the formalism as well as some stylized examples.

Suggested Citation

  • Carlo Acerbi & Giacomo Scandolo, 2008. "Liquidity risk theory and coherent measures of risk," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 681-692.
  • Handle: RePEc:taf:quantf:v:8:y:2008:i:7:p:681-692
    DOI: 10.1080/14697680802373975

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    2. Umut Çetin & Robert A. Jarrow & Philip Protter, 2008. "Liquidity risk and arbitrage pricing theory," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 8, pages 153-183, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:8:y:2008:i:7:p:681-692. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.