IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0703074.html
   My bibliography  Save this paper

Bid-Ask Dynamic Pricing in Financial Markets with Transaction Costs and Liquidity Risk

Author

Listed:
  • Jocelyne Bion-Nadal

Abstract

We introduce, in continuous time, an axiomatic approach to assign to any financial position a dynamic ask (resp. bid) price process. Taking into account both transaction costs and liquidity risk this leads to the convexity (resp. concavity) of the ask (resp. bid) price. Time consistency is a crucial property for dynamic pricing. Generalizing the result of Jouini and Kallal, we prove that the No Free Lunch condition for a time consistent dynamic pricing procedure (TCPP) is equivalent to the existence of an equivalent probability measure $R$ that transforms a process between the bid process and the ask process of any financial instrument into a martingale. Furthermore we prove that the ask price process associated with any financial instrument is then a $R$-supermartingale process which has a cadlag modification. Finally we show that time consistent dynamic pricing allows both to extend the dynamics of some reference assets and to be consistent with any observed bid ask spreads that one wants to take into account. It then provides new bounds reducing the bid ask spreads for the other financial instruments.

Suggested Citation

  • Jocelyne Bion-Nadal, 2007. "Bid-Ask Dynamic Pricing in Financial Markets with Transaction Costs and Liquidity Risk," Papers math/0703074, arXiv.org.
  • Handle: RePEc:arx:papers:math/0703074
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0703074
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John H. Cochrane & Jesus Saa-Requejo, 2000. "Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 79-119, February.
    2. Jocelyne Bion-Nadal, 2006. "Time Consistent Dynamic Risk Processes, Cadlag Modification," Papers math/0607212, arXiv.org.
    3. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    4. Umut Çetin & Robert A. Jarrow & Philip Protter, 2008. "Liquidity risk and arbitrage pricing theory," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 8, pages 153-183, World Scientific Publishing Co. Pte. Ltd..
    5. Patrick Cheridito & Freddy Delbaen & Michael Kupper, 2006. "Coherent and convex monetary risk measures for unbounded càdlàg processes," Finance and Stochastics, Springer, vol. 10(3), pages 427-448, September.
    6. Barrieu, Pauline & El Karoui, Nicole, 2005. "Inf-convolution of risk measures and optimal risk transfer," LSE Research Online Documents on Economics 2829, London School of Economics and Political Science, LSE Library.
    7. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    8. Jakša Cvitanić & Ioannis Karatzas, 1996. "Hedging And Portfolio Optimization Under Transaction Costs: A Martingale Approach12," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165, April.
    9. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and Dynamic Convex Risk Measures," SFB 649 Discussion Papers SFB649DP2005-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    10. Pauline Barrieu & Nicole El Karoui, 2005. "Inf-convolution of risk measures and optimal risk transfer," Finance and Stochastics, Springer, vol. 9(2), pages 269-298, April.
    11. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    12. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    13. Antonio E. Bernardo & Olivier Ledoit, 2000. "Gain, Loss, and Asset Pricing," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 144-172, February.
    14. Marco Avellaneda & Antonio ParAS, 1996. "Managing the volatility risk of portfolios of derivative securities: the Lagrangian uncertain volatility model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(1), pages 21-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jocelyne Bion-Nadal, 2008. "Time Consistent Dynamic Limit Order Books Calibrated on Options," Papers 0809.3824, arXiv.org.
    2. Marie-Amelie Morlais, 2008. "Reflected backward stochastic differential equations and a class of non linear dynamic pricing rule," Papers 0802.2172, arXiv.org, revised May 2008.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bion-Nadal, Jocelyne, 2009. "Bid-ask dynamic pricing in financial markets with transaction costs and liquidity risk," Journal of Mathematical Economics, Elsevier, vol. 45(11), pages 738-750, December.
    2. Masaaki Fukasawa & Mitja Stadje, 2018. "Perfect hedging under endogenous permanent market impacts," Finance and Stochastics, Springer, vol. 22(2), pages 417-442, April.
    3. Masaaki Fukasawa & Mitja Stadje, 2017. "Perfect hedging under endogenous permanent market impacts," Papers 1702.01385, arXiv.org.
    4. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    5. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    6. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015.
    7. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    8. Pal, Soumik, 2007. "Computing strategies for achieving acceptability: A Monte Carlo approach," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1587-1605, November.
    9. Roorda, Berend & Schumacher, J.M., 2011. "The strictest common relaxation of a family of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 29-34, January.
    10. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    11. A. Jobert & L. C. G. Rogers, 2008. "Valuations And Dynamic Convex Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 1-22, January.
    12. Roorda Berend & Schumacher Hans, 2013. "Membership conditions for consistent families of monetary valuations," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 255-280, August.
    13. Alessandro Doldi & Marco Frittelli, 2021. "Real-Valued Systemic Risk Measures," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
    14. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    15. Rama Cont, 2006. "Model uncertainty and its impact on the pricing of derivative instruments," Post-Print halshs-00002695, HAL.
    16. Xavier De Scheemaekere, 2009. "Upper and lower bounds on dynamic risk indifference prices in incomplete markets," Papers 0909.3219, arXiv.org, revised Sep 2010.
    17. Saul Jacka & Seb Armstrong & Abdel Berkaoui, 2017. "Multi-currency reserving for coherent risk measures," Papers 1712.01319, arXiv.org, revised Dec 2017.
    18. Stadje, M.A. & Pelsser, A., 2014. "Time-Consistent and Market-Consistent Evaluations (Revised version of 2012-086)," Discussion Paper 2014-002, Tilburg University, Center for Economic Research.
    19. Alfredo Ibáñez, 2005. "Option-Pricing in Incomplete Markets: The Hedging Portfolio plus a Risk Premium-Based Recursive Approach," Computing in Economics and Finance 2005 216, Society for Computational Economics.
    20. Alexander S. Cherny, 2009. "Capital Allocation And Risk Contribution With Discrete‐Time Coherent Risk," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 13-40, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0703074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.