IDEAS home Printed from
   My bibliography  Save this article

Coherent and convex monetary risk measures for unbounded càdlàg processes


  • Patrick Cheridito


  • Freddy Delbaen


  • Michael Kupper



Assume that the random future evolution of values is modelled in continuous time. Then, a risk measure can be viewed as a functional on a space of continuous-time stochastic processes. In this paper we study coherent and convex monetary risk measures on the space of all càdlàg processes that are adapted to a given filtration. We show that if such risk measures are required to be real-valued, then they can only depend on a stochastic process in a way that is uninteresting for many applications. Therefore, we allow them to take values in ( −∞, ∞]. The economic interpretation of a value of ∞ is that the corresponding financial position is so risky that no additional amount of money can make it acceptable. The main result of the paper gives different characterizations of coherent or convex monetary risk measures on the space of all bounded adapted càdlàg processes that can be extended to coherent or convex monetary risk measures on the space of all adapted càdlàg processes. As examples we discuss a new approach to measure the risk of an insurance company and a coherent risk measure for unbounded càdlàg processes induced by a so called m-stable set. Copyright Springer-Verlag 2006

Suggested Citation

  • Patrick Cheridito & Freddy Delbaen & Michael Kupper, 2006. "Coherent and convex monetary risk measures for unbounded càdlàg processes," Finance and Stochastics, Springer, vol. 10(3), pages 427-448, September.
  • Handle: RePEc:spr:finsto:v:10:y:2006:i:3:p:427-448
    DOI: 10.1007/s00780-006-0017-1

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    2. Epstein, Larry G. & Schneider, Martin, 2003. "Recursive multiple-priors," Journal of Economic Theory, Elsevier, vol. 113(1), pages 1-31, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    2. Pospisil, Libor & Vecer, Jan & Xu, Mingxin, 2007. "Tradable measure of risk," MPRA Paper 5059, University Library of Munich, Germany.
    3. Patrick Cheridito & Ulrich Horst & Michael Kupper & Traian A. Pirvu, 2016. "Equilibrium Pricing in Incomplete Markets Under Translation Invariant Preferences," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 174-195, February.
    4. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    5. repec:hal:wpaper:hal-00870224 is not listed on IDEAS
    6. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573,, revised Jun 2016.
    7. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028,, revised Sep 2017.
    8. Sungyong Choi & KyungBae Park & Sang-Oh Shim, 2018. "Comparing validity of risk measures on newsvendor models in open innovation perspective," Journal of Open Innovation: Technology, Market, and Complexity, MDPI, Open Access Journal, vol. 4(1), pages 1-12, January.
    9. Masaaki Fukasawa & Mitja Stadje, 2017. "Perfect hedging under endogenous permanent market impacts," Papers 1702.01385,
    10. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    11. Homem-de-Mello, Tito & Pagnoncelli, Bernardo K., 2016. "Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective," European Journal of Operational Research, Elsevier, vol. 249(1), pages 188-199.
    12. Jocelyne Bion-Nadal, 2007. "Bid-Ask Dynamic Pricing in Financial Markets with Transaction Costs and Liquidity Risk," Papers math/0703074,
    13. Engsner, Hampus & Lindholm, Mathias & Lindskog, Filip, 2017. "Insurance valuation: A computable multi-period cost-of-capital approach," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 250-264.
    14. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    15. Masaaki Fukasawa & Mitja Stadje, 2018. "Perfect hedging under endogenous permanent market impacts," Finance and Stochastics, Springer, vol. 22(2), pages 417-442, April.
    16. Christopher W. Miller & Insoon Yang, 2015. "Optimal Control of Conditional Value-at-Risk in Continuous Time," Papers 1512.05015,, revised Jan 2017.
    17. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    18. E. Kromer & L. Overbeck & K. Zilch, 2019. "Dynamic systemic risk measures for bounded discrete time processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(1), pages 77-108, August.
    19. Alexander S. Cherny, 2009. "Capital Allocation And Risk Contribution With Discrete‐Time Coherent Risk," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 13-40, January.

    More about this item


    Coherent risk measures; Convex monetary risk measures; Coherent utility functionals; Concave monetary utility functionals; Unbounded càdlàg processes; Extension of risk measures; 91B30; 91B16; 60G07; 52A07; 46A55; 46A20; D81; C60; G18;

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:10:y:2006:i:3:p:427-448. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.