IDEAS home Printed from
   My bibliography  Save this paper

Distribution-Invariant Dynamic Risk Measures


  • Weber, Stefan


The paper provides an axiomatic characterization of dynamic risk measures for multi-period financial positions. For the special case of a terminal cash flow, we require that risk depends on its conditional distribution only. We prove a representation theorem for dynamic risk measures and investigate their relation to static risk measures. Two notions of dynamic consistency are proposed. A key insight of the paper is that dynamic consistency and the notion of ?measure convex sets of probability measures? are intimately related. Measure convexity can be interpreted using the concept of compound lotteries. We characterize the class of static risk measures that represent consistent dynamic risk measures. It turns out that these are closely connected to shortfall risk. Under weak additional assumptions, static convex risk measures coincide with shortfall risk, if compound lotteries of acceptable respectively rejected positions are again acceptable respectively rejected. This result implies a characterization of dynamically consistent convex risk measures.

Suggested Citation

  • Weber, Stefan, 2003. "Distribution-Invariant Dynamic Risk Measures," SFB 373 Discussion Papers 2003,53, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:200353

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    2. Epstein, Larry G. & Schneider, Martin, 2003. "Recursive multiple-priors," Journal of Economic Theory, Elsevier, vol. 113(1), pages 1-31, November.
    3. repec:dau:papers:123456789/5446 is not listed on IDEAS
    4. Stefan Jaschke & Uwe Küchler, 2001. "Coherent risk measures and good-deal bounds," Finance and Stochastics, Springer, vol. 5(2), pages 181-200.
    5. Carlier, G. & Dana, R. A., 2003. "Core of convex distortions of a probability," Journal of Economic Theory, Elsevier, vol. 113(2), pages 199-222, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Geman, Hélyette & Ohana, Steve, 2008. "Time-consistency in managing a commodity portfolio: A dynamic risk measure approach," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 1991-2005, October.
    2. Berend Roorda & J. M. Schumacher & Jacob Engwerda, 2005. "Coherent Acceptability Measures In Multiperiod Models," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 589-612.

    More about this item


    Dynamic risk measure; capital requirement; measure of risk; dynamic consistency; measure convexity; shortfall risk;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200353. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.