IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v45y2009i11p738-750.html
   My bibliography  Save this article

Bid-ask dynamic pricing in financial markets with transaction costs and liquidity risk

Author

Listed:
  • Bion-Nadal, Jocelyne

Abstract

According to the classic no arbitrage theory of asset pricing, in a frictionless market a No Free Lunch dynamic price process associated with any essentially bounded asset is a martingale under an equivalent probability measure. However, real financial markets are not frictionless. We introduce an axiomatic approach of Time Consistent Pricing Procedure (TCPP), in a model free setting, to assign to every financial position a dynamic ask (resp. bid) price process. Taking into account both transaction costs and liquidity risk this leads to the convexity (resp. concavity) of the ask (resp. bid) price. We prove that the No Free Lunch condition for a TCPP is equivalent to the existence of an equivalent probability measure R that transforms a process between the bid price process and the ask price process of every financial instrument into a martingale. Furthermore we prove that the ask (resp. bid) price process associated with every financial instrument is then a R super-martingale (resp. R sub-martingale) which has a càdlàg version. The axiomatic of TCPP allows for the construction of pricing procedures extending the dynamics of reference assets and calibrated on option prices for a reference family of options. We characterize such TCPP in terms of their dual representation. Such TCPP provide new bounds compatible with the observed bid and ask prices for the reference options and reducing the bid ask spreads for the other financial instruments.

Suggested Citation

  • Bion-Nadal, Jocelyne, 2009. "Bid-ask dynamic pricing in financial markets with transaction costs and liquidity risk," Journal of Mathematical Economics, Elsevier, vol. 45(11), pages 738-750, December.
  • Handle: RePEc:eee:mateco:v:45:y:2009:i:11:p:738-750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(09)00056-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/5630 is not listed on IDEAS
    2. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    3. repec:crs:wpaper:9513 is not listed on IDEAS
    4. Jocelyne Bion-Nadal, 2008. "Dynamic risk measures: Time consistency and risk measures from BMO martingales," Finance and Stochastics, Springer, vol. 12(2), pages 219-244, April.
    5. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    6. Jouini, Elyes, 2000. "Price functionals with bid-ask spreads: an axiomatic approach," Journal of Mathematical Economics, Elsevier, vol. 34(4), pages 547-558, December.
    7. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    8. Jeremy Staum, 2004. "Fundamental Theorems of Asset Pricing for Good Deal Bounds," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 141-161.
    9. U. Çetin & R. Jarrow & P. Protter & M. Warachka, 2008. "Pricing Options in an Extended Black Scholes Economy with Illiquidity: Theory and Empirical Evidence," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 9, pages 185-221 World Scientific Publishing Co. Pte. Ltd..
    10. Jaksa Cvitanić & Ioannis Karatzas, 1996. "HEDGING AND PORTFOLIO OPTIMIZATION UNDER TRANSACTION COSTS: A MARTINGALE APPROACH-super-2," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165.
    11. L. Randall Wray & Stephanie Bell, 2004. "Introduction," Chapters,in: Credit and State Theories of Money, chapter 1 Edward Elgar Publishing.
    12. Shige Peng, 2006. "Modelling Derivatives Pricing Mechanisms with Their Generating Functions," Papers math/0605599, arXiv.org.
    13. Klöppel Susanne & Schweizer Martin, 2007. "Dynamic utility-based good deal bounds," Statistics & Risk Modeling, De Gruyter, vol. 25(4/2007), pages 1-25, October.
    14. Föllmer Hans & Penner Irina, 2006. "Convex risk measures and the dynamics of their penalty functions," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-36, July.
    15. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    16. Tomas Björk & Irina Slinko, 2006. "Towards a General Theory of Good-Deal Bounds," Review of Finance, European Finance Association, vol. 10(2), pages 221-260.
    17. repec:dau:papers:123456789/13388 is not listed on IDEAS
    18. Föllmer, Hans & Kramkov, D. O., 1997. "Optional decompositions under constraints," SFB 373 Discussion Papers 1997,31, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    19. Jocelyne Bion-Nadal, 2008. "Time Consistent Dynamic Limit Order Books Calibrated on Options," Papers 0809.3824, arXiv.org.
    20. Susanne Klöppel & Martin Schweizer, 2007. "Dynamic Indifference Valuation Via Convex Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 599-627.
    21. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    22. Umut Çetin & Robert A. Jarrow & Philip Protter, 2008. "Liquidity risk and arbitrage pricing theory," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 8, pages 153-183 World Scientific Publishing Co. Pte. Ltd..
    23. Kabanov, Yu. M. & Stricker, Ch., 2001. "The Harrison-Pliska arbitrage pricing theorem under transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 185-196, April.
    24. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    25. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and Dynamic Convex Risk Measures," SFB 649 Discussion Papers SFB649DP2005-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    26. Stefan Jaschke & Uwe Küchler, 2001. "Coherent risk measures and good-deal bounds," Finance and Stochastics, Springer, vol. 5(2), pages 181-200.
    27. Astic, Fabian & Touzi, Nizar, 2007. "No arbitrage conditions and liquidity," Journal of Mathematical Economics, Elsevier, vol. 43(6), pages 692-708, August.
    28. Pauline Barrieu & Nicole El Karoui, 2005. "Inf-convolution of risk measures and optimal risk transfer," Finance and Stochastics, Springer, vol. 9(2), pages 269-298, April.
    29. Bion-Nadal, Jocelyne, 2009. "Time consistent dynamic risk processes," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 633-654, February.
    30. Philippe Robert-Demontrond & R. Ringoot, 2004. "Introduction," Post-Print halshs-00081823, HAL.
    31. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    32. Richard Rouge & Nicole El Karoui, 2000. "Pricing Via Utility Maximization and Entropy," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 259-276.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grigorova Miryana, 2014. "Stochastic orderings with respect to a capacity and an application to a financial optimization problem," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 1-31, June.
    2. Dilip B. Madan, 2016. "Benchmarking in two price financial markets," Annals of Finance, Springer, vol. 12(2), pages 201-219, May.
    3. Takuji Arai, 2015. "Good deal bounds with convex constraints," Papers 1506.00396, arXiv.org.
    4. Takuji Arai & Masaaki Fukasawa, 2011. "Convex risk measures for good deal bounds," Papers 1108.1273, arXiv.org.
    5. repec:pal:assmgt:v:17:y:2016:i:2:d:10.1057_jam.2015.42 is not listed on IDEAS
    6. Tomasz R. Bielecki & Igor Cialenco & Tao Chen, 2014. "Dynamic Conic Finance via Backward Stochastic Difference Equations," Papers 1412.6459, arXiv.org, revised Dec 2014.
    7. Jocelyne Bion-Nadal & Giulia Nunno, 2013. "Dynamic no-good-deal pricing measures and extension theorems for linear operators on L ∞," Finance and Stochastics, Springer, vol. 17(3), pages 587-613, July.
    8. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2016. "A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective," Papers 1603.09030, arXiv.org, revised Jan 2017.
    9. Dilip B. Madan, 2016. "Conic Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-42, May.
    10. Takuji Arai, 2016. "Good deal bounds with convex constraints: --- examples and proofs ---," Keio-IES Discussion Paper Series 2016-017, Institute for Economics Studies, Keio University.
    11. Ernst Eberlein & Dilip Madan & Martijn Pistorius & Wim Schoutens & Marc Yor, 2014. "Two price economies in continuous time," Annals of Finance, Springer, vol. 10(1), pages 71-100, February.
    12. Madan, Dilip B., 2014. "Modeling and monitoring risk acceptability in markets: The case of the credit default swap market," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 63-73.
    13. repec:wsi:ijtafx:v:20:y:2017:i:02:n:s021902491750011x is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:45:y:2009:i:11:p:738-750. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.