IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v90y2019i1d10.1007_s00186-018-0655-z.html
   My bibliography  Save this article

Dynamic systemic risk measures for bounded discrete time processes

Author

Listed:
  • E. Kromer

    () (University of California)

  • L. Overbeck

    () (University of Giessen)

  • K. Zilch

    () (University of Giessen)

Abstract

The question of measuring and managing systemic risk—especially in view of the recent financial crisis—became more and more important. We study systemic risk by taking the perspective of a financial regulator and considering the axiomatic approach originally introduced in Chen et al. (Manag Sci 59(6):1373–1388, 2013) and extended in Kromer et al. (Math Methods Oper Res 84:323–357, 2016). The aim of this paper is to generalize the static approach in Kromer et al. (2016) and analyze systemic risk measures in a dynamic setting. We work in the framework of Cheridito et al. (Electron J Probab 11:57–106, 2006) who consider risk measures for bounded discrete-time processes. Apart from the possibility to consider the “evolution of financial values”, another important advantage of the dynamic approach is the possibility to incorporate information in the risk measurement and management process. In context of this dynamic setting we also discuss the arising question of time-consistency for our dynamic systemic risk measures.

Suggested Citation

  • E. Kromer & L. Overbeck & K. Zilch, 2019. "Dynamic systemic risk measures for bounded discrete time processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(1), pages 77-108, August.
  • Handle: RePEc:spr:mathme:v:90:y:2019:i:1:d:10.1007_s00186-018-0655-z
    DOI: 10.1007/s00186-018-0655-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-018-0655-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoffmann, Hannes & Meyer-Brandis, Thilo & Svindland, Gregor, 2016. "Risk-consistent conditional systemic risk measures," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2014-2037.
    2. Patrick Cheridito & Freddy Delbaen & Michael Kupper, 2006. "Coherent and convex monetary risk measures for unbounded càdlàg processes," Finance and Stochastics, Springer, vol. 10(3), pages 427-448, September.
    3. Beatrice Acciaio & Hans Föllmer & Irina Penner, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," Finance and Stochastics, Springer, vol. 16(4), pages 669-709, October.
    4. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    5. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    6. Francesca Biagini & Jean‐Pierre Fouque & Marco Frittelli & Thilo Meyer‐Brandis, 2019. "A unified approach to systemic risk measures via acceptance sets," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 329-367, January.
    7. Chen Chen & Garud Iyengar & Ciamac C. Moallemi, 2013. "An Axiomatic Approach to Systemic Risk," Management Science, INFORMS, vol. 59(6), pages 1373-1388, June.
    8. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    9. Patrick Cheridito & Michael Kupper, 2011. "Composition Of Time-Consistent Dynamic Monetary Risk Measures In Discrete Time," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 137-162.
    10. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    11. E. Kromer & L. Overbeck & K. Zilch, 2016. "Systemic risk measures on general measurable spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 323-357, October.
    12. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    13. Hannes Hoffmann & Thilo Meyer-Brandis & Gregor Svindland, 2016. "Risk-Consistent Conditional Systemic Risk Measures," Papers 1609.07897, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:90:y:2019:i:1:d:10.1007_s00186-018-0655-z. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.