Central Limit Theorem for Sequential Monte Carlo Methods and its Applications to Bayesian Inference
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
- Nicolas Chopin, 2001. "Sequential Inference and State Number Determination for Discrete State-Space Models through Particle Filtering," Working Papers 2001-34, Center for Research in Economics and Statistics.
- Nicolas Chopin, 2002.
"A sequential particle filter method for static models,"
Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
- Nicolas Chopin, 2000. "A Sequential Particle Filter Method for Static Models," Working Papers 2000-45, Center for Research in Economics and Statistics.
- Christophe Andrieu & Arnaud Doucet, 2002. "Particle filtering for partially observed Gaussian state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 827-836, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jasra, Ajay & Doucet, Arnaud, 2008. "Stability of sequential Monte Carlo samplers via the Foster-Lyapunov condition," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3062-3069, December.
- Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015.
"Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox," Tinbergen Institute Discussion Papers 13-055/III, Tinbergen Institute, revised 16 Jan 2015.
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox," CREATES Research Papers 2013-09, Department of Economics and Business Economics, Aarhus University.
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo Matlab Toolbox," Working Papers 2013:08, Department of Economics, University of Venice "Ca' Foscari".
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Harman K. van Dijk, 2014. "Parallel sequential Monte Carlo for efficient density combination: The DeCo MATLAB toolbox," Working Paper 2014/11, Norges Bank.
- Gareth W. Peters & Efstathios Panayi & Francois Septier, 2015. "SMC-ABC methods for the estimation of stochastic simulation models of the limit order book," Papers 1504.05806, arXiv.org.
- Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011.
"state-observation sampling and the econometrics of learning models,"
HEC Research Papers Series
947, HEC Paris.
- Laurent-Emmanuel Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Working Papers hal-00625500, HAL.
- Laurent E. Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Papers 1105.4519, arXiv.org.
- Saikat Saha, 2015. "Noise Robust Online Inference for Linear Dynamic Systems," Papers 1504.05723, arXiv.org.
- Johansen, Adam M. & Doucet, Arnaud, 2008. "A note on auxiliary particle filters," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1498-1504, September.
- Jie Xiong & Yong Zeng, 2011. "A branching particle approximation to a filtering micromovement model of asset price," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 111-140, May.
- John Geweke, 2016. "Sequentially Adaptive Bayesian Learning for a Nonlinear Model of the Secular and Cyclical Behavior of US Real GDP," Econometrics, MDPI, vol. 4(1), pages 1-23, March.
- Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016.
"Dynamic prediction pools: An investigation of financial frictions and forecasting performance,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," NBER Working Papers 20575, National Bureau of Economic Research, Inc.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," PIER Working Paper Archive 14-034, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic prediction pools: an investigation of financial frictions and forecasting performance," Staff Reports 695, Federal Reserve Bank of New York.
- Drew Creal, 2012.
"A Survey of Sequential Monte Carlo Methods for Economics and Finance,"
Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
- Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Qian, Hang, 2015. "Inequality Constrained State Space Models," MPRA Paper 66447, University Library of Munich, Germany.
- Markku Lanne & Jani Luoto, 2015. "Estimation of DSGE Models under Diffuse Priors and Data-Driven Identification Constraints," CREATES Research Papers 2015-37, Department of Economics and Business Economics, Aarhus University.
- Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015.
"Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models,"
Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
- Rodrigo S. Targino & Gareth W. Peters & Pavel V. Shevchenko, 2014. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Papers 1410.1101, arXiv.org, revised Feb 2015.
- Garland Durham & John Geweke, 2013. "Adaptive Sequential Posterior Simulators for Massively Parallel Computing Environments," Working Paper Series 9, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
- Nicolas Chopin, 2007. "Dynamic Detection of Change Points in Long Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 349-366, June.
- Daniel F. Waggoner & Hongwei Wu & Tao Zha, 2014. "The Dynamic Striated Metropolis-Hastings Sampler for High-Dimensional Models," FRB Atlanta Working Paper 2014-21, Federal Reserve Bank of Atlanta.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Drew Creal, 2012.
"A Survey of Sequential Monte Carlo Methods for Economics and Finance,"
Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
- Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Jian He & Asma Khedher & Peter Spreij, 2021. "A Kalman particle filter for online parameter estimation with applications to affine models," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 353-403, July.
- Nicolas Chopin, 2007. "Dynamic Detection of Change Points in Long Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 349-366, June.
- Chopin, N. & Del Moral, P. & Rubenthaler, S., 2011.
"Stability of Feynman-Kac formulae with path-dependent potentials,"
Stochastic Processes and their Applications, Elsevier, vol. 121(1), pages 38-60, January.
- Nicolas CHOPIN & Pierre DEL MORAL & Sylvain RUBENTHALER, 2010. "Stability of Feynman-Kac Formulae with Path-dependent Potentials," Working Papers 2010-03, Center for Research in Economics and Statistics.
- Andreas Hetland, 2018. "The Stochastic Stationary Root Model," Econometrics, MDPI, vol. 6(3), pages 1-33, August.
- Mark Briers & Arnaud Doucet & Simon Maskell, 2010. "Smoothing algorithms for state–space models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 61-89, February.
- Chopin, Nicolas & Pelgrin, Florian, 2004. "Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation," Journal of Econometrics, Elsevier, vol. 123(2), pages 327-344, December.
- Crisan, D. & Li, K., 2015. "Generalised particle filters with Gaussian mixtures," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2643-2673.
- repec:wyi:journl:002173 is not listed on IDEAS
- Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
- Jeong Eun Lee & Christian Robert, 2013. "Imortance Sampling Schemes for Evidence Approximation in Mixture Models," Working Papers 2013-42, Center for Research in Economics and Statistics.
- Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
- James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
- James M. Nason & Gregor W. Smith, 2021.
"Measuring the slowly evolving trend in US inflation with professional forecasts,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
- James M. Nason & Gregor W. Smith, 2013. "Measuring The Slowly Evolving Trend In Us Inflation With Professional Forecasts," Working Paper 1316, Economics Department, Queen's University.
- James M. Nason & Gregor W. Smith, 2014. "Measuring the Slowly Evolving Trend in US Inflation with Professional Forecasts," CAMA Working Papers 2014-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Mariolis Theodore & Konstantakis Konstantinos N. & Michaelides Panayotis G. & Tsionas Efthymios G., 2019.
"A non-linear Keynesian Goodwin-type endogenous model of the cycle: Bayesian evidence for the USA,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(1), pages 1-16, February.
- Mariolis, Theodore & Konstantakis, Konstantinos N. & Michaelides, Panayotis G. & Tsionas, Efthymios G., 2019. "A non-linear Keynesian Goodwin-type endogenous model of the cycle: Bayesian evidence for the USA," LSE Research Online Documents on Economics 100229, London School of Economics and Political Science, LSE Library.
- Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018.
"Monte Carlo Confidence Sets for Identified Sets,"
Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
- Xiaohong Chen & Timothy Christensen & Elie Tamer, 2016. "Monte Carlo Confidence sets for Identified Sets," Cowles Foundation Discussion Papers 2037R2, Cowles Foundation for Research in Economics, Yale University, revised Sep 2017.
- Xiaohong Chen & Timothy Christensen & Elie Tamer, 2016. "Monte Carlo Confidence Sets for Identified Sets," Papers 1605.00499, arXiv.org, revised Sep 2017.
- Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2017. "Monte Carlo confidence sets for identified sets," CeMMAP working papers CWP43/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hedibert F. Lopes & Nicholas G. Polson, 2014. "Particle Learning for Fat-tailed Distributions," Business and Economics Working Papers 203, Unidade de Negocios e Economia, Insper.
- Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2022.
"Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(6), pages 1637-1671, September.
- Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2018. "Estimating a nonlinear new Keynesian model with the zero lower bound for Japan," CAMA Working Papers 2018-37, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2020. "Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan," Working Papers e154, Tokyo Center for Economic Research.
- Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2018. "Estimating a Nonlinear New Keynesian Model with a Zero Lower Bound for Japan," Working Papers e120, Tokyo Center for Economic Research.
- Nathan Cunningham & Jim E. Griffin & David L. Wild, 2020. "ParticleMDI: particle Monte Carlo methods for the cluster analysis of multiple datasets with applications to cancer subtype identification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 463-484, June.
- Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011.
"state-observation sampling and the econometrics of learning models,"
HEC Research Papers Series
947, HEC Paris.
- Laurent-Emmanuel Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Working Papers hal-00625500, HAL.
- Laurent E. Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Papers 1105.4519, arXiv.org.
- Liu, Chen & Wang, Chao & Tran, Minh-Ngoc & Kohn, Robert, 2025. "A long short-term memory enhanced realized conditional heteroskedasticity model," Economic Modelling, Elsevier, vol. 142(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2002-44. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.