IDEAS home Printed from https://ideas.repec.org/p/aap/wpaper/203.html
   My bibliography  Save this paper

Particle Learning for Fat-tailed Distributions

Author

Listed:
  • Hedibert F. Lopes
  • Nicholas G. Polson

Abstract

It is well-known that parameter estimates and forecasts are sensitive to assumptions about the tail behavior of the error distribution. In this paper we develop an approach to sequential inference that also simultaneously estimates the tail of the accompanying error distribution. Our simulation-based approach models errors with a tν-distribution and, as new data arrives, we sequentially compute the marginal posterior distribution of the tail thickness. Our method naturally incorporates fat-tailed error distributions and can be extended to other data features such as stochastic volatility. We show that the sequential Bayes factor provides an optimal test of fat-tails versus normality. We provide an empirical and theoretical analysis of the rate of learning of tail thickness under a default Jeffreys prior. We illustrate our sequential methodology on the British pound/US dollar daily exchange rate data and on data from the 2008-2009 credit crisis using daily S&P500 returns. Our method naturally extends to multivariate and dynamic panel data.

Suggested Citation

  • Hedibert F. Lopes & Nicholas G. Polson, 2014. "Particle Learning for Fat-tailed Distributions," Business and Economics Working Papers 203, Unidade de Negocios e Economia, Insper.
  • Handle: RePEc:aap:wpaper:203
    as

    Download full text from publisher

    File URL: https://repositorio.insper.edu.br/server/api/core/bitstreams/bf1c102e-0084-43f1-80c0-12bf4f8594d5/content?authentication-token=eyJhbGciOiJIUzI1NiJ9.eyJlaWQiOiIwNmRmYmM2MS1iNGQ1LTQ1YzgtYjlmNS1lYTk1ZDQwYTIwNzkiLCJzZyI6W10sImF1dGhlbnRpY2F0aW9uTWV0aG9kIjoicGFzc3dvcmQiLCJleHAiOjE3NDA3NzQ4NjJ9.taEsCYIrSFfejVSDbYaEeZeMsbPGRUlGRjZ8ZsNxvp4
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aap:wpaper:203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Biblioteca Telles (email available below). General contact details of provider: https://edirc.repec.org/data/inspebr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.