IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v62y2000i3p493-508.html
   My bibliography  Save this article

Mixture Kalman filters

Author

Listed:
  • Rong Chen
  • Jun S. Liu

Abstract

No abstract is available for this item.

Suggested Citation

  • Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
  • Handle: RePEc:bla:jorssb:v:62:y:2000:i:3:p:493-508
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/1467-9868.00246
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    2. Dong Guo & Xiaodong Wang & Rong Chen, 2003. "Nonparametric adaptive detection in fading channels based on sequential Monte Carlo and Bayesian model averaging," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 423-436, June.
    3. Mark Briers & Arnaud Doucet & Simon Maskell, 2010. "Smoothing algorithms for state–space models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 61-89, February.
    4. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.
    5. Koop, Gary & Korobilis, Dimitris, 2011. "UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so?," Economic Modelling, Elsevier, vol. 28(5), pages 2307-2318, September.
    6. Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    7. Nicolas Chopin, 2007. "Dynamic Detection of Change Points in Long Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 349-366, June.
    8. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
    9. Elmar Mertens & James M Nason, 2015. "Inflation and Professional Forecast Dynamics: An Evaluation of Stickiness, Persistence, and Volatility," CAMA Working Papers 2015-06, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Rimstad, Kjartan & Omre, Henning, 2013. "Approximate posterior distributions for convolutional two-level hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 187-200.
    11. Duan, Jin-Chuan, 2016. "Local-momentum autoregression and the modeling of interest rate term structure," Journal of Econometrics, Elsevier, vol. 194(2), pages 349-359.
    12. Qian, Hang, 2015. "Inequality Constrained State Space Models," MPRA Paper 66447, University Library of Munich, Germany.
    13. Mark Irwin & Noel Cressie & Gardar Johannesson, 2002. "Spatial-temporal nonlinear filtering based on hierarchical statistical models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(2), pages 249-302, December.
    14. Crisan, D. & Li, K., 2015. "Generalised particle filters with Gaussian mixtures," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2643-2673.
    15. Dacheng Liu & Tao Lu & Xu-Feng Niu & Hulin Wu, 2011. "Mixed-Effects State-Space Models for Analysis of Longitudinal Dynamic Systems," Biometrics, The International Biometric Society, vol. 67(2), pages 476-485, June.
    16. Chopin, N. & Del Moral, P. & Rubenthaler, S., 2011. "Stability of Feynman-Kac formulae with path-dependent potentials," Stochastic Processes and their Applications, Elsevier, vol. 121(1), pages 38-60, January.
    17. Johan Dahlin & Thomas B. Schon, 2015. "Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models," Papers 1511.01707, arXiv.org, revised Oct 2017.
    18. Ming Lin & Eric A. Suess & Robert H. Shumway & Rong Chen, 2016. "Bayesian Deconvolution of Signals Observed on Arrays," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 837-850, November.
    19. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    20. repec:wyi:journl:002173 is not listed on IDEAS
    21. Hammer, Hugo & Tjelmeland, Håkon, 2011. "Approximate forward-backward algorithm for a switching linear Gaussian model," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 154-167, January.
    22. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    23. repec:eee:jfinec:v:124:y:2017:i:3:p:535-562 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:62:y:2000:i:3:p:493-508. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.