IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo Matlab Toolbox

  • Roberto Casarin

    ()

    (Department of Economics, University Of Venice Cà Foscari)

  • Stefano Grassi

    ()

    (CREATES, Department of Economics and Business, Aarhus University)

  • Francesco Ravazzolo

    ()

    (Norges Bank and BI Norwegian Business School)

  • Herman K. van Dijk

    ()

    (Erasmus University Rotterdam, VU University Amsterdam and Tinbergen Institute)

This paper presents the Matlab package DeCo (Density Combination) which is based on the paper by Billio et al. (2013) where a constructive Bayesian approach is presented for combining predictive densities originating from different models or other sources of information. The combination weights are time-varying and may depend on past predictive forecasting performances and other learning mechanisms. The core algorithm is the function DeCo which applies banks of parallel Sequential Monte Carlo algorithms to filter the time-varying combination weights. The DeCo procedure has been implemented both for standard CPU computing and for Graphical Process Unit (GPU) parallel computing. For the GPU implementation we use the Matlab parallel computing toolbox and show how to use General Purposes GPU computing almost effortless. This GPU implementation comes with a speed up of the execution time up to seventy times compared to a standard CPU Matlab implementation on a multicore CPU. We show the use of the package and the computational gain of the GPU version, through some simulation experiments and empirical applications

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.unive.it/media/allegato/DIP/Economia/Working_papers/Working_papers_2013/WP_DSE_casarin_grassi_ravazzolo_vandijk_08_13.pdf
File Function: First version, 2013
Download Restriction: no

Paper provided by Department of Economics, University of Venice "Ca' Foscari" in its series Working Papers with number 2013:08.

as
in new window

Length: 30
Date of creation: 2013
Date of revision:
Handle: RePEc:ven:wpaper:2013:08
Contact details of provider: Postal: Cannaregio, S. Giobbe no 873 , 30121 Venezia
Phone: +39-0412349621
Fax: +39-0412349176
Web page: http://www.unive.it/dip.economia
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Morozov, Sergei & Mathur, Sudhanshu, 2009. "Massively parallel computation using graphics processors with application to optimal experimentation in dynamic control," MPRA Paper 30298, University Library of Munich, Germany, revised 04 Apr 2011.
  2. Eric M. Aldrich & Jesus Fernandez-Villaverde & A. Ronald Gallant & Juan F. Rubio-Ramirez, 2010. "Tapping the Supercomputer Under Your Desk: Solving Dynamic Equilibrium Models with Graphics Processors," Working Papers 10-89, Duke University, Department of Economics.
  3. Roberto Casarin & Jean-Michel Marin, 2007. "Online data processing: comparison of Bayesian regularized particle filters," Working Papers 0703, University of Brescia, Department of Economics.
  4. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
  5. James P. LeSage, 1998. "ECONOMETRICS: MATLAB toolbox of econometrics functions," Statistical Software Components T961401, Boston College Department of Economics.
  6. Matt Dziubinski & Stefano Grassi, 2014. "Heterogeneous Computing in Economics: A Simplified Approach," Computational Economics, Society for Computational Economics, vol. 43(4), pages 485-495, April.
  7. Anne-Sofie Jore & James Mitchell & Shaun P. Vahey, 2008. "Combining forecast densities from VARs with uncertain instabilities," Working Paper 2008/01, Norges Bank.
  8. Mathur, Sudhanshu & Morozov, Sergei, 2009. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," MPRA Paper 16721, University Library of Munich, Germany.
  9. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  10. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
  11. D'Agostino, Antonello & Gambetti, Luca & Giannone, Domenico, 2009. "Macroeconomic Forecasting and Structural Change," CEPR Discussion Papers 7542, C.E.P.R. Discussion Papers.
  12. Casarin, Roberto & Chang, Chia-Lin & Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio, 2013. "Risk management of risk under the Basel Accord: A Bayesian approach to forecasting Value-at-Risk of VIX futures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 183-204.
  13. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
  14. Michael Creel & William Goffe, 2008. "Multi-core CPUs, Clusters, and Grid Computing: A Tutorial," Computational Economics, Society for Computational Economics, vol. 32(4), pages 353-382, November.
  15. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Time-varying Combinations of Predictive Densities using Nonlinear Filtering," Tinbergen Institute Discussion Papers 12-118/III, Tinbergen Institute.
  16. Dimitris Korobilis, 2010. "VAR Forecasting Using Bayesian Variable Selection," Working Paper Series 51_10, The Rimini Centre for Economic Analysis, revised Apr 2011.
  17. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
  18. Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
  19. Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
  20. Swann, Christopher A, 2002. "Maximum Likelihood Estimation Using Parallel Computing: An Introduction to MPI," Computational Economics, Society for Computational Economics, vol. 19(2), pages 145-78, April.
  21. Michael Creel, 2005. "User-Friendly Parallel Computations with Econometric Examples," Computational Economics, Society for Computational Economics, vol. 26(2), pages 107-128, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2013:08. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Geraldine Ludbrook)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.