IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control

  • Sergei Morozov

    ()

  • Sudhanshu Mathur

    ()

Registered author(s):

    The rapid growth in the performance of graphics hardware, coupled with recent improvements in its programmability has lead to its adoption in many non-graphics applications, including a wide variety of scientific computing fields. At the same time, a number of important dynamic optimal policy problems in economics are athirst of computing power to help overcome dual curses of complexity and dimensionality. We investigate if computational economics may benefit from new tools on a case study of imperfect information dynamic programming problem with learning and experimentation trade-off, that is, a choice between controlling the policy target and learning system parameters. Specifically, we use a model of active learning and control of a linear autoregression with the unknown slope that appeared in a variety of macroeconomic policy and other contexts. The endogeneity of posterior beliefs makes the problem difficult in that the value function need not be convex and the policy function need not be continuous. This complication makes the problem a suitable target for massively-parallel computation using graphics processors (GPUs). Our findings are cautiously optimistic in that the new tools let us easily achieve a factor of 15 performance gain relative to an implementation targeting single-core processors. Further gains up to a factor of 26 are also achievable but lie behind a learning and experimentation barrier of their own. Drawing upon experience with CUDA programming architecture and GPUs provides general lessons on how to best exploit future trends in parallel computation in economics. Copyright Springer Science+Business Media, LLC. 2012

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s10614-011-9297-4
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Society for Computational Economics in its journal Computational Economics.

    Volume (Year): 40 (2012)
    Issue (Month): 2 (August)
    Pages: 151-182

    as
    in new window

    Handle: RePEc:kap:compec:v:40:y:2012:i:2:p:151-182
    Contact details of provider: Web page: http://www.springerlink.com/link.asp?id=100248

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. William L. Goffe & Michael Creel, 2005. "Multi-core CPUs, Clusters and Grid Computing: a Tutorial," Computing in Economics and Finance 2005 438, Society for Computational Economics.
    2. Prescott, Edward C, 1972. "The Multi-Period Control Problem Under Uncertainty," Econometrica, Econometric Society, vol. 40(6), pages 1043-58, November.
    3. Lars E.O. Svensson, 1995. "Optimal Inflation Targets, `Conservative' Central Banks, and Linear Inflation Contracts," NBER Working Papers 5251, National Bureau of Economic Research, Inc.
    4. Swann, Christopher A, 2002. "Maximum Likelihood Estimation Using Parallel Computing: An Introduction to MPI," Computational Economics, Society for Computational Economics, vol. 19(2), pages 145-78, April.
    5. Christopher A. Sims & Daniel F. Waggoner & Tao Zha, 2006. "Methods for inference in large multiple-equation Markov-switching models," Working Paper 2006-22, Federal Reserve Bank of Atlanta.
    6. Nagurney, Anna & Takayama, Takashi & Zhang, Ding, 1995. "Massively parallel computation of spatial price equilibrium problems as dynamical systems," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 3-37.
    7. Eric M. Aldrich & Jesus Fernandez-Villaverde & A. Ronald Gallant & Juan F. Rubio-Ramirez, 2010. "Tapping the Supercomputer Under Your Desk: Solving Dynamic Equilibrium Models with Graphics Processors," Working Papers 10-89, Duke University, Department of Economics.
    8. Christopher Ferrall, 2003. "Solving Finite Mixture Models in Parallel," Computational Economics 0303003, EconWPA.
    9. Wieland, Volker, 2000. "Learning by doing and the value of optimal experimentation," Journal of Economic Dynamics and Control, Elsevier, vol. 24(4), pages 501-534, April.
    10. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    11. Beck, Gunter W. & Wieland, Volker, 2002. "Learning and control in a changing economic environment," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1359-1377, August.
    12. Kendrick, David, 1978. "Non-convexities from probing in adaptive control problems," Economics Letters, Elsevier, vol. 1(4), pages 347-351.
    13. Michael Creel, 2005. "User-Friendly Parallel Computations with Econometric Examples," Computational Economics, Society for Computational Economics, vol. 26(2), pages 107-128, October.
    14. Brezzi, Monica & Lai, Tze Leung, 2002. "Optimal learning and experimentation in bandit problems," Journal of Economic Dynamics and Control, Elsevier, vol. 27(1), pages 87-108, November.
    15. Chong, Yock Y & Hendry, David F, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Wiley Blackwell, vol. 53(4), pages 671-90, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:40:y:2012:i:2:p:151-182. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.