IDEAS home Printed from https://ideas.repec.org/p/aah/create/2012-15.html
   My bibliography  Save this paper

Heterogeneous Computing in Economics: A Simplified Approach

Author

Listed:
  • Matt P. Dziubinski

    () (Aarhus University and CREATES)

  • Stefano Grassi

    () (Aarhus University and CREATES)

Abstract

This paper shows the potential of heterogeneous computing in solving dynamic equilibrium models in economics. We illustrate the power and simplicity of the C++ Accelerated Massive Parallelism recently introduced by Microsoft. Starting from the same exercise as Aldrich et al. (2011) we document a speed gain together with a simplified programming style that naturally enables parallelization.

Suggested Citation

  • Matt P. Dziubinski & Stefano Grassi, 2012. "Heterogeneous Computing in Economics: A Simplified Approach," CREATES Research Papers 2012-15, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2012-15
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/creates/rp/12/rp12_15.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aldrich, Eric M. & Fernández-Villaverde, Jesús & Ronald Gallant, A. & Rubio-Ramírez, Juan F., 2011. "Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), pages 386-393, March.
    2. Mathur, Sudhanshu & Morozov, Sergei, 2009. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," MPRA Paper 16721, University Library of Munich, Germany.
    3. Sergei Morozov & Sudhanshu Mathur, 2012. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 151-182, August.
    4. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    5. Michael Creel & William Goffe, 2008. "Multi-core CPUs, Clusters, and Grid Computing: A Tutorial," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 353-382, November.
    6. Michael Creel, 2005. "User-Friendly Parallel Computations with Econometric Examples," Computational Economics, Springer;Society for Computational Economics, vol. 26(2), pages 107-128, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    2. Kaufmann, Hendrik & Kruse, Robinson & Sibbertsen, Philipp, 2012. "On tests for linearity against STAR models with deterministic trends," Economics Letters, Elsevier, vol. 117(1), pages 268-271.
    3. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2015. "The impact of financial crises on the risk–return tradeoff and the leverage effect," Economic Modelling, Elsevier, vol. 49(C), pages 407-418.
    4. repec:gam:jecnmx:v:4:y:2016:i:1:p:11:d:65219 is not listed on IDEAS
    5. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
    6. Nalan Baştürk & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2016. "Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 1-20, March.
    7. Oancea, Bogdan, 2014. "Parallel Computing in Economics - An Overview of the Software Frameworks," MPRA Paper 72039, University Library of Munich, Germany.
    8. Robert Kirkby, 2017. "A Toolkit for Value Function Iteration," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 1-15, January.
    9. Michael C. Hatcher & Eric M. Scheffel, 2016. "Solving the Incomplete Markets Model in Parallel Using GPU Computing and the Krusell–Smith Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 569-591, December.
    10. John Gibson & James P Henson, 2016. "Getting the most from MATLAB: ditching canned routines and embracing coder," Economics Bulletin, AccessEcon, vol. 36(4), pages 2519-2525.

    More about this item

    Keywords

    Code optimization; CUDA; C++; C++ AMP; Data parallelism; DSGE models; Econometrics; Heterogeneous computing; Highperformance computing; Parallel computing.;

    JEL classification:

    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2012-15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.