IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox

  • Roberto Casarin

    ()

    (University Ca’ Foscari of Venice and GRETA)

  • Stefano Grassi

    ()

    (Aarhus University and CREATES)

  • Francesco Ravazzolo

    ()

    (Norges Bank and BI Norwegian Business School)

  • Herman K. van Dijk

    ()

    (Erasmus University Rotterdam, VU University Amsterdam and Tinbergen Institute)

This paper presents the Matlab package DeCo (Density Combination) which is based on the paper by Billio et al. (2013) where a constructive Bayesian approach is presented for combining predictive densities originating from different models or other sources of information. The combination weights are time-varying and may depend on past predictive forecasting performances and other learning mechanisms. The core algorithm is the function DeCo which applies banks of parallel Sequential Monte Carlo algorithms to filter the time-varying combination weights. The DeCo procedure has been implemented both for standard CPU computing and for Graphical Process Unit (GPU) parallel computing. For the GPU implementation we use the Matlab parallel computing toolbox and show how to use General Purposes GPU computing almost effortless. This GPU implementation comes with a speed up of the execution time up to seventy times compared to a standard CPU Matlab implementation on a multicore CPU. We show the use of the package and the computational gain of the GPU version, through some simulation experiments and empirical applications.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/creates/rp/13/rp13_09.pdf
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2013-09.

as
in new window

Length: 28
Date of creation: 04 Aug 2013
Date of revision:
Handle: RePEc:aah:create:2013-09
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Michael Creel & William Goffe, 2008. "Multi-core CPUs, Clusters, and Grid Computing: A Tutorial," Computational Economics, Society for Computational Economics, vol. 32(4), pages 353-382, November.
  2. Morozov, Sergei & Mathur, Sudhanshu, 2009. "Massively parallel computation using graphics processors with application to optimal experimentation in dynamic control," MPRA Paper 30298, University Library of Munich, Germany, revised 04 Apr 2011.
  3. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
  4. Korobilis, Dimitris, 2009. "VAR forecasting using Bayesian variable selection," MPRA Paper 21124, University Library of Munich, Germany.
  5. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
  6. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
  7. Matt Dziubinski & Stefano Grassi, 2014. "Heterogeneous Computing in Economics: A Simplified Approach," Computational Economics, Society for Computational Economics, vol. 43(4), pages 485-495, April.
  8. Eric M. Aldrich & Jesús Fernández-Villaverde & Ronald Gallant & Juan F. Rubio-Ramírez, 2010. "Tapping the Supercomputer Under Your Desk: Solving Dynamic Equilibrium Models with Graphics Processors," PIER Working Paper Archive 10-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  9. Michael Creel, 2005. "User-Friendly Parallel Computations with Econometric Examples," Computational Economics, Society for Computational Economics, vol. 26(2), pages 107-128, October.
  10. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
  11. James P. LeSage, 1998. "ECONOMETRICS: MATLAB toolbox of econometrics functions," Statistical Software Components T961401, Boston College Department of Economics.
  12. Swann, Christopher A, 2002. "Maximum Likelihood Estimation Using Parallel Computing: An Introduction to MPI," Computational Economics, Society for Computational Economics, vol. 19(2), pages 145-78, April.
  13. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  14. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, 01.
  15. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
  16. Terui, N. & van Dijk, H.K., 1999. "Combined forecasts from linear and nonlinear time series models," Econometric Institute Research Papers EI 9949-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  17. Roberto Casarin & Jean-Michel Marin, 2007. "Online data processing: comparison of Bayesian regularized particle filters," Working Papers 0703, University of Brescia, Department of Economics.
  18. Mathur, Sudhanshu & Morozov, Sergei, 2009. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," MPRA Paper 16721, University Library of Munich, Germany.
  19. repec:dgr:uvatin:20120118 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2013-09. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.