IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20160099.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Time-varying Combinations of Bayesian Dynamic Models and Equity Momentum Strategies

Author

Listed:
  • Nalan Basturk

    (Maastricht University, The Netherlands)

  • Stefano Grassi

    (University of Kent, United Kingdom)

  • Lennart Hoogerheide

    (VU University Amsterdam, The Netherlands)

  • Herman K. van Dijk

    (Erasmus University Rotterdam, The Netherlands)

Abstract

A novel dynamic asset-allocation approach is proposed where portfolios as well as portfolio strategies are updated at every decision period based on their past performance. For modeling, a general class of models is specified that combines a dynamic factor and a vector autoregressive model and includes stochastic volatility, denoted by FAVAR-SV. Next, a Bayesian strategy combination is introduced in order to deal with a set of strategies. Our approach extends the mixture of the experts analysis by allowing the strategic weights to be dependent between strategies as well as over time and to further allow for strategy incompleteness. Our approach results in a combination of different portfolio strategies: a model-based and a residual momentum strategy. The estimation of this modeling and strategy approach can be done using an extended and modified version of the forecast combination methodology of Casarin, Grassi, Ravazzolo and Van Dijk(2016). Given the complexity of the non-linear and non-Gaussian model used a new and efficient filter is introduced based on the MitISEM approach by Hoogerheide, Opschoor and Van Dijk (2013). Using US industry portfolios between 1926M7 and 2015M6 as data, our empirical results indicate that time-varying combinations of flexible models in the FAVAR-SV class and two momentum strategies lead to better return and risk features than very simple and very complex models. Combinations of two strategies help, in particular, to reduce risk features like volatility and largest loss, which indicates that complete densities provide useful information for risk.

Suggested Citation

  • Nalan Basturk & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2016. "Time-varying Combinations of Bayesian Dynamic Models and Equity Momentum Strategies," Tinbergen Institute Discussion Papers 16-099/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20160099
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/16099.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    2. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
    3. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    4. Ng, Victor & Engle, Robert F. & Rothschild, Michael, 1992. "A multi-dynamic-factor model for stock returns," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 245-266.
    5. Blitz, David & Huij, Joop & Martens, Martin, 2011. "Residual momentum," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 506-521, June.
    6. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    7. Nalan Baştürk & Stefano Grassi & Lennart Hoogerheide & Herman K. Van Dijk, 2016. "Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM," Econometrics, MDPI, vol. 4(1), pages 1-20, March.
    8. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    9. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    10. Tobias J. Moskowitz & Mark Grinblatt, 1999. "Do Industries Explain Momentum?," Journal of Finance, American Finance Association, vol. 54(4), pages 1249-1290, August.
    11. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    12. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    13. Clifford S. Asness & Tobias J. Moskowitz & Lasse Heje Pedersen, 2013. "Value and Momentum Everywhere," Journal of Finance, American Finance Association, vol. 68(3), pages 929-985, June.
    14. Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2012. "A class of adaptive importance sampling weighted EM algorithms for efficient and robust posterior and predictive simulation," Journal of Econometrics, Elsevier, vol. 171(2), pages 101-120.
    15. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
    16. Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017. "The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
    17. Yufeng Han, 2006. "Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model," The Review of Financial Studies, Society for Financial Studies, vol. 19(1), pages 237-271.
    18. Fama, Eugene F & French, Kenneth R, 1996. "Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    19. Narasimhan Jegadeesh & Sheridan Titman, 2001. "Profitability of Momentum Strategies: An Evaluation of Alternative Explanations," Journal of Finance, American Finance Association, vol. 56(2), pages 699-720, April.
    20. Chan, Louis K C & Jegadeesh, Narasimhan & Lakonishok, Josef, 1996. "Momentum Strategies," Journal of Finance, American Finance Association, vol. 51(5), pages 1681-1713, December.
    21. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    22. Winkler, Robert L & Barry, Christopher B, 1975. "A Bayesian Model for Portfolio Selection and Revision," Journal of Finance, American Finance Association, vol. 30(1), pages 179-192, March.
    23. Jushan Bai & Peng Wang, 2015. "Identification and Bayesian Estimation of Dynamic Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 221-240, April.
    24. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    25. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    26. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    27. Jean-Francois Richard, 2007. "Efficient High-Dimensional Importance Sampling," Working Paper 321, Department of Economics, University of Pittsburgh, revised Jan 2007.
    28. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    29. Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baştürk, N. & Borowska, A. & Grassi, S. & Hoogerheide, L. & van Dijk, H.K., 2019. "Forecast density combinations of dynamic models and data driven portfolio strategies," Journal of Econometrics, Elsevier, vol. 210(1), pages 170-186.
    2. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    3. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baştürk, N. & Borowska, A. & Grassi, S. & Hoogerheide, L. & van Dijk, H.K., 2019. "Forecast density combinations of dynamic models and data driven portfolio strategies," Journal of Econometrics, Elsevier, vol. 210(1), pages 170-186.
    2. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, June.
    3. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2023. "A flexible predictive density combination for large financial data sets in regular and crisis periods," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Kewei Hou & Chen Xue & Lu Zhang, 2017. "Replicating Anomalies," NBER Working Papers 23394, National Bureau of Economic Research, Inc.
    5. Azevedo, Vitor, 2023. "Analysts’ underreaction and momentum strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    6. Tobias J. Moskowitz, 2021. "Asset Pricing and Sports Betting," Journal of Finance, American Finance Association, vol. 76(6), pages 3153-3209, December.
    7. Hannah Lea Hühn & Hendrik Scholz, 2018. "Alpha Momentum and Price Momentum," IJFS, MDPI, vol. 6(2), pages 1-28, May.
    8. Lu Zhang, 2017. "The Investment CAPM," European Financial Management, European Financial Management Association, vol. 23(4), pages 545-603, September.
    9. Chou, Pin-Huang & Ko, Kuan-Cheng & Yang, Nien-Tzu, 2019. "Asset growth, style investing, and momentum," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 108-124.
    10. Juhani T. Linnainmaa & Michael R. Roberts, 2016. "The History of the Cross Section of Stock Returns," NBER Working Papers 22894, National Bureau of Economic Research, Inc.
    11. Mao, Mike Qinghao & Wei, K.C. John, 2014. "Price and earnings momentum: An explanation using return decomposition," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 332-351.
    12. Lou, Dong & Polk, Christopher & Skouras, Spyros, 2019. "A tug of war: Overnight versus intraday expected returns," Journal of Financial Economics, Elsevier, vol. 134(1), pages 192-213.
    13. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    14. Hong-Yi Chen & Sheng-Syan Chen & Chin-Wen Hsin & Cheng Few Lee, 2020. "Does Revenue Momentum Drive or Ride Earnings or Price Momentum?," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 94, pages 3263-3318, World Scientific Publishing Co. Pte. Ltd..
    15. Wang, Jun & Wu, Yangru, 2011. "Risk adjustment and momentum sources," Journal of Banking & Finance, Elsevier, vol. 35(6), pages 1427-1435, June.
    16. Kim, Junyong, 2024. "Zoom in on momentum," International Review of Financial Analysis, Elsevier, vol. 94(C).
    17. Daniel, Kent & Moskowitz, Tobias J., 2016. "Momentum crashes," Journal of Financial Economics, Elsevier, vol. 122(2), pages 221-247.
    18. Martin H. Schmidt, 2017. "Trading strategies based on past returns: evidence from Germany," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(2), pages 201-256, May.
    19. Naranjo, Andy & Porter, Burt, 2010. "Risk factor and industry effects in the cross-country comovement of momentum returns," Journal of International Money and Finance, Elsevier, vol. 29(2), pages 275-299, March.
    20. Nettayanun, Sampan, 2023. "Asset pricing in bull and bear markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).

    More about this item

    Keywords

    Nonlinear; non-gaussian state space; filters; density combinations; bayesian modeling; equity momentum;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20160099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.