IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v18y2000i3p338-57.html
   My bibliography  Save this article

Bayesian Dynamic Factor Models and Portfolio Allocation

Author

Listed:
  • Aguilar, Omar
  • West, Mike

Abstract

We discuss the development of dynamic factor models for multivariate financial time series, and the incorporation of stochastic volatility components for latent factor processes. Bayesian inference and computation is developed and explored in a study of the dynamic factor structure of daily spot exchange rates for a selection of international currencies. The models are direct generalizations of univariate stochastic volatility models and represent specific varieties of models recently discussed in the growing multivariate stochastic volatility literature. We discuss model fitting based on retrospective data and sequential analysis for forward filtering and short-term forecasting. Analyses are compared with results from the much simpler method of dynamic variance-matrix discounting that, for over a decade, has been a standard approach in applied financial econometrics. We study these models in analysis, forecasting, and sequential portfolio allocation for a selected set of international exchange-rate-return time series. Our goals are to understand a range of modeling questions arising in using these factor models and to explore empirical performance in portfolio construction relative to discount approaches. We report on our experiences and conclude with comments about the practical utility of structured factor models and on future potential model extensions.

Suggested Citation

  • Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
  • Handle: RePEc:bes:jnlbes:v:18:y:2000:i:3:p:338-57
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:18:y:2000:i:3:p:338-57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.