IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/438.html
   My bibliography  Save this paper

Multi-core CPUs, Clusters and Grid Computing: a Tutorial

Author

Listed:
  • William L. Goffe
  • Michael Creel

Abstract

The nature of computing is changing and it poses both challenges and opportunities for economists. Instead of increasing clock speed, future microprocessors will have "multi-cores" with separate execution units. "Threads" or other multi-processing techniques that are rarely used today are required to take full advantage of them. Beyond one machine, it has become easy to harness multiple computers to work in clusters. Besides dedicated clusters, they can be made up of unused lab computers or even your colleagues' machines. We will give live demos of multi-core and clusters and will describe grid computing (multiple clusters that could span the Internet). OpenMP (open multi-processing) and MPI (message passing interface) are among the topics described and shown live

Suggested Citation

  • William L. Goffe & Michael Creel, 2005. "Multi-core CPUs, Clusters and Grid Computing: a Tutorial," Computing in Economics and Finance 2005 438, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:438
    as

    Download full text from publisher

    File URL: http://repec.org/sce2005/up.27114.1107381068.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donghoon Lee & Matthew Wiswall, 2007. "A Parallel Implementation of the Simplex Function Minimization Routine," Computational Economics, Springer;Society for Computational Economics, vol. 30(2), pages 171-187, September.
    2. Michael Creel, 2007. "I ran four million probits last night: HPC clustering with ParallelKnoppix," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 215-223.
    3. Ekvall, Niklas, 1994. "Experiences in the Pricing of Trivariate Contingent Claims with Finite Difference Methods on a Massively Parallel Computer," Computational Economics, Springer;Society for Computational Economics, vol. 7(2), pages 63-72.
    4. Kontoghiorghes, Erricos J, 2000. "Parallel Strategies for Solving SURE Models with Variance Inequalities and Positivity of Correlations Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 15(1-2), pages 89-106, April.
    5. Giorgio Pauletto & Manfred Gilli, 2000. "Parallel Krylov Methods for Econometric Model Simulation," Computational Economics, Springer;Society for Computational Economics, vol. 16(1/2), pages 173-186, October.
    6. Nagurney, Anna, 1996. "Parallel computation," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 7, pages 335-404, Elsevier.
    7. H. M. Amman & D. A. Kendrick & J. Rust (ed.), 1996. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 1, number 1.
    8. Nagurney, Anna & Takayama, Takashi & Zhang, Ding, 1995. "Massively parallel computation of spatial price equilibrium problems as dynamical systems," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 3-37.
    9. Swann, Christopher A, 2002. "Maximum Likelihood Estimation Using Parallel Computing: An Introduction to MPI," Computational Economics, Springer;Society for Computational Economics, vol. 19(2), pages 145-178, April.
    10. Michael Creel, 2005. "User-Friendly Parallel Computations with Econometric Examples," UFAE and IAE Working Papers 637.05, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    11. Beaumont, Paul M & Bradshaw, Patrick T, 1995. "A Distributed Parallel Genetic Algorithm for Solving Optimal Growth Models," Computational Economics, Springer;Society for Computational Economics, vol. 8(3), pages 159-179, August.
    12. Michael Creel, 2005. "ParallelKnoppix," Grecs Computer Code 003.05, Research Group in Computation and Simulations (GRECS).
    13. Michael Creel, 2004. "ParallelKnoppix - Rapid Deployment of a Linux Cluster for MPI Parallel Processing Using Non-Dedicated Computers," UFAE and IAE Working Papers 625.04, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    14. Christopher Ferrall, 2005. "Solving Finite Mixture Models: Efficient Computation in Economics Under Serial and Parallel Execution," Computational Economics, Springer;Society for Computational Economics, vol. 25(4), pages 343-379, June.
    15. Michael Creel, 2005. "User-Friendly Parallel Computations with Econometric Examples," Computational Economics, Springer;Society for Computational Economics, vol. 26(2), pages 107-128, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
    2. Morozov, Sergei & Mathur, Sudhanshu, 2009. "Massively parallel computation using graphics processors with application to optimal experimentation in dynamic control," MPRA Paper 30298, University Library of Munich, Germany, revised 04 Apr 2011.
    3. Sergei Morozov & Sudhanshu Mathur, 2012. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 151-182, August.
    4. Michael C. Hatcher & Eric M. Scheffel, 2016. "Solving the Incomplete Markets Model in Parallel Using GPU Computing and the Krusell–Smith Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 569-591, December.
    5. Matt Dziubinski & Stefano Grassi, 2014. "Heterogeneous Computing in Economics: A Simplified Approach," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 485-495, April.
    6. Lilia Maliar, 2015. "Assessing gains from parallel computation on a supercomputer," Economics Bulletin, AccessEcon, vol. 35(1), pages 159-167.
    7. Bogdan OANCEA & Tudorel ANDREI & Raluca DRAGOESCU, 2012. "Cuda Based Computational Methods For Macroeconomic Forecasts," New Trends in Modelling and Economic Forecast (MEF 2011), ROMANIAN ACADEMY – INSTITUTE FOR ECONOMIC FORECASTING;"Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 1(1), pages 42-53, January.
    8. Dimitris Kremmydas & M.I. Haque & Stelios Rozakis, 2011. "Enhancing Web-Spatial DSS interactivity with parallel computing: The case of bio-energy economic assessment in Greece," Working Papers 2011-2, Agricultural University of Athens, Department Of Agricultural Economics.
    9. Yongyang Cai & Kenneth Judd & Greg Thain & Stephen Wright, 2015. "Solving Dynamic Programming Problems on a Computational Grid," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 261-284, February.
    10. Michael Creel, 2016. "A Note on Julia and MPI, with Code Examples," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 535-546, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donghoon Lee & Matthew Wiswall, 2007. "A Parallel Implementation of the Simplex Function Minimization Routine," Computational Economics, Springer;Society for Computational Economics, vol. 30(2), pages 171-187, September.
    2. Kyle Klein & Julian Neira, 2014. "Nelder-Mead Simplex Optimization Routine for Large-Scale Problems: A Distributed Memory Implementation," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 447-461, April.
    3. Mathur, Sudhanshu & Morozov, Sergei, 2009. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," MPRA Paper 16721, University Library of Munich, Germany.
    4. Michael Creel, 2008. "Using Parallelization to Solve a Macroeconomic Model: A Parallel Parameterized Expectations Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 343-352, November.
    5. Lilia Maliar, 2015. "Assessing gains from parallel computation on a supercomputer," Economics Bulletin, AccessEcon, vol. 35(1), pages 159-167.
    6. Christopher Ferrall, 2005. "Solving Finite Mixture Models: Efficient Computation in Economics Under Serial and Parallel Execution," Computational Economics, Springer;Society for Computational Economics, vol. 25(4), pages 343-379, June.
    7. Michael Creel, 2005. "User-Friendly Parallel Computations with Econometric Examples," Computational Economics, Springer;Society for Computational Economics, vol. 26(2), pages 107-128, October.
    8. Morozov, Sergei & Mathur, Sudhanshu, 2009. "Massively parallel computation using graphics processors with application to optimal experimentation in dynamic control," MPRA Paper 30298, University Library of Munich, Germany, revised 04 Apr 2011.
    9. Nagurney, Anna & Zhang, Ding, 1998. "A massively parallel implementation of a discrete-time algorithm for the computation of dynamic elastic demand traffic problems modeled as projected dynamical systems," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1467-1485, August.
    10. Sergei Morozov & Sudhanshu Mathur, 2012. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 151-182, August.
    11. Michael S. Delgado & Christopher F. Parmeter, 2013. "Embarrassingly Easy Embarrassingly Parallel Processing in R: Implementation and Reproducibility," Working Papers 2013-06, University of Miami, Department of Economics.
    12. Michael Creel, 2005. "User-Friendly Parallel Computations with Econometric Examples," UFAE and IAE Working Papers 637.05, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    13. Michael Creel, 2009. "A Data Mining Approach to Indirect Inference," UFAE and IAE Working Papers 788.09, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC), revised 25 Oct 2009.
    14. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    15. Michael Creel & Dennis Kristensen, "undated". "Indirect Likelihood Inference," Working Papers 558, Barcelona School of Economics.
    16. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
    17. Nagurney, Anna & Besik, Deniz & Dong, June, 2019. "Tariffs and quotas in world trade: A unified variational inequality framework," European Journal of Operational Research, Elsevier, vol. 275(1), pages 347-360.
    18. Michael Creel, 2016. "A Note on Julia and MPI, with Code Examples," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 535-546, October.
    19. John Rust, 1996. "Dealing with the Complexity of Economic Calculations," Computational Economics 9610002, University Library of Munich, Germany, revised 21 Oct 1997.
    20. Oancea, Bogdan, 2014. "Parallel Computing in Economics - An Overview of the Software Frameworks," MPRA Paper 72039, University Library of Munich, Germany.

    More about this item

    Keywords

    parallel computing; clusters; grid computing;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.