IDEAS home Printed from
   My bibliography  Save this article

Measuring marginal risk contributions in credit portfolios


  • Thomas Siller


The Fourier Transform Monte Carlo (FTMC) method, a powerful algorithm for robust computation of marginal risk contributions and capital allocations for credit portfolios in the framework of mixture models, is presented. The method outperforms results obtained from simple Monte Carlo simulations which are flawed by high variances if expected values conditional on rare events are calculated. The FTMC method exploits the conditional independence property of the underlying latent variable model and, in addition, makes use of the Fast Fourier Transform technique for risk aggregation. Marginal risk contributions for expected shortfall, value at risk and capital at risk are presented for a synthetic but realistic credit portfolio.

Suggested Citation

  • Thomas Siller, 2013. "Measuring marginal risk contributions in credit portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1915-1923, December.
  • Handle: RePEc:taf:quantf:v:13:y:2013:i:12:p:1915-1923
    DOI: 10.1080/14697688.2012.742203

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    2. Dirk Tasche, 2009. "Capital allocation for credit portfolios with kernel estimators," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 581-595.
    3. Sandro Merino & Mark Nyfeler, 2004. "Applying importance sampling for estimating coherent credit risk contributions," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 199-207.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, Open Access Journal, vol. 6(4), pages 1-28, December.
    2. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794,, revised May 2020.
    3. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    4. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, Open Access Journal, vol. 8(1), pages 1-33, January.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:13:y:2013:i:12:p:1915-1923. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.