IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1902.03041.html
   My bibliography  Save this paper

Modelling Extremal Dependence for Operational Risk by a Bipartite Graph

Author

Listed:
  • Oliver Kley
  • Claudia Kluppelberg
  • Sandra Paterlini

Abstract

We introduce a statistical model for operational losses based on heavy-tailed distributions and bipartite graphs, which captures the event type and business line structure of operational risk data. The model explicitly takes into account the Pareto tails of losses and the heterogeneous dependence structures between them. We then derive estimators for individual as well as aggregated tail risk, measured in terms of Value-at-Risk and Conditional-Tail-Expectation for very high confidence levels, and provide also an asymptotically full capital allocation method. Estimation methods for such tail risk measures and capital allocations are also proposed and tested on simulated data. Finally, by having access to real-world operational risk losses from the Italian banking system, we show that even with a small number of observations, the proposed estimation methods produce reliable estimates, and that quantifying dependence by means of the empirical network has a big impact on estimates at both individual and aggregate level, as well as for capital allocations.

Suggested Citation

  • Oliver Kley & Claudia Kluppelberg & Sandra Paterlini, 2019. "Modelling Extremal Dependence for Operational Risk by a Bipartite Graph," Papers 1902.03041, arXiv.org.
  • Handle: RePEc:arx:papers:1902.03041
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1902.03041
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bernard, Carole & Vanduffel, Steven, 2015. "A new approach to assessing model risk in high dimensions," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 166-178.
    2. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    3. Oliver Kley & Claudia Klüppelberg & Gesine Reinert, 2016. "Risk in a Large Claims Insurance Market with Bipartite Graph Structure," Operations Research, INFORMS, vol. 64(5), pages 1159-1176, October.
    4. Klaus Bocker & Claudia Kluppelberg, 2010. "Multivariate models for operational risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 855-869.
    5. Zhou, Chen, 2010. "Dependence structure of risk factors and diversification effects," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 531-540, June.
    6. Oliver Kley & Claudia Kluppelberg, 2015. "Bounds for randomly shared risk of heavy-tailed loss factors," Papers 1503.03726, arXiv.org, revised Apr 2016.
    7. Xiao Qin & Chen Zhou, 2013. "Systemic Risk Allocation for Systems with A Small Number of Banks," DNB Working Papers 378, Netherlands Central Bank, Research Department.
    8. Paul Embrechts & Haiyan Liu & Tiantian Mao & Ruodu Wang, 2017. "Quantile-Based Risk Sharing with Heterogeneous Beliefs," Swiss Finance Institute Research Paper Series 17-65, Swiss Finance Institute, revised Jan 2018.
    9. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    10. Georg Mainik & Ludger Rüschendorf, 2010. "On optimal portfolio diversification with respect to extreme risks," Finance and Stochastics, Springer, vol. 14(4), pages 593-623, December.
    11. Dirk Tasche, 2007. "Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle," Papers 0708.2542, arXiv.org, revised Jun 2008.
    12. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    13. Frachot, Antoine & Roncalli, Thierry & Salomon, Eric, 2004. "The Correlation Problem in Operational Risk," MPRA Paper 38052, University Library of Munich, Germany.
    14. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    15. C. Gourieroux & A. Monfort, 2013. "Allocating Systemic Risk In A Regulatory Perspective," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(07), pages 1-20.
    16. Stefan Mittnik & Sandra Paterlini & Tina Yener, 2011. "Operational–risk Dependencies and the Determination of Risk Capital," Center for Economic Research (RECent) 070, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    17. Bakirov, Nail K. & Rizzo, Maria L. & Szekely, Gábor J., 2006. "A multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1742-1756, September.
    18. Barbe, Philippe & Fougères, Anne-Laure & Genest, Christian, 2006. "On the Tail Behavior of Sums of Dependent Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 361-373, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Qihe & Tong, Zhiwei & Xun, Li, 2022. "Insurance risk analysis of financial networks vulnerable to a shock," European Journal of Operational Research, Elsevier, vol. 301(2), pages 756-771.
    2. Bingzhen Geng & Yang Liu & Yimiao Zhao, 2024. "Value-at-Risk- and Expectile-based Systemic Risk Measures and Second-order Asymptotics: With Applications to Diversification," Papers 2404.18029, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Kley & Claudia Klüppelberg & Gesine Reinert, 2016. "Risk in a Large Claims Insurance Market with Bipartite Graph Structure," Operations Research, INFORMS, vol. 64(5), pages 1159-1176, October.
    2. John H. J. Einmahl & Fan Yang & Chen Zhou, 2021. "Testing the Multivariate Regular Variation Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 907-919, October.
    3. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    4. Oliver Kley & Claudia Kluppelberg & Gesine Reinert, 2014. "Risk in a large claims insurance market with bipartite graph structure," Papers 1410.8671, arXiv.org, revised Nov 2015.
    5. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    6. Tong, Bin & Wu, Chongfeng & Xu, Weidong, 2012. "Risk concentration of aggregated dependent risks: The second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 139-149.
    7. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    8. Takashi Kato, 2017. "Theoretical Sensitivity Analysis For Quantitative Operational Risk Management," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(05), pages 1-23, August.
    9. Eckert, Christian & Gatzert, Nadine, 2017. "Modeling operational risk incorporating reputation risk: An integrated analysis for financial firms," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 122-137.
    10. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    11. Georg Mainik & Georgi Mitov & Ludger Ruschendorf, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Papers 1505.04045, arXiv.org.
    12. Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.
    13. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    14. Takaaki Koike & Mihoko Minami, 2017. "Estimation of Risk Contributions with MCMC," Papers 1702.03098, arXiv.org, revised Jan 2019.
    15. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    16. Csóka, Péter & Bátyi, Tamás László & Pintér, Miklós & Balog, Dóra, 2011. "Tőkeallokációs módszerek és tulajdonságaik a gyakorlatban [Methods of capital allocation and their characteristics in practice]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 619-632.
    17. Cosimo Munari & Stefan Weber & Lutz Wilhelmy, 2023. "Capital requirements and claims recovery: A new perspective on solvency regulation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 329-380, June.
    18. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.
    19. Mainik Georg & Rüschendorf Ludger, 2012. "Ordering of multivariate risk models with respect to extreme portfolio losses," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 73-106, March.
    20. Puzanova, Natalia & Düllmann, Klaus, 2013. "Systemic risk contributions: A credit portfolio approach," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1243-1257.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1902.03041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.