IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v14y2010i4p593-623.html
   My bibliography  Save this article

On optimal portfolio diversification with respect to extreme risks

Author

Listed:
  • Georg Mainik

    ()

  • Ludger Rüschendorf

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • Georg Mainik & Ludger Rüschendorf, 2010. "On optimal portfolio diversification with respect to extreme risks," Finance and Stochastics, Springer, vol. 14(4), pages 593-623, December.
  • Handle: RePEc:spr:finsto:v:14:y:2010:i:4:p:593-623
    DOI: 10.1007/s00780-010-0122-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-010-0122-z
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafael Schmidt & Ulrich Stadtmüller, 2006. "Non-parametric Estimation of Tail Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 307-335.
    2. H. A. Hauksson & M. Dacorogna & T. Domenig & U. Mller & G. Samorodnitsky, 2001. "Multivariate extremes, aggregation and risk estimation," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 79-95.
    3. Casper G. de Vries & Gennady Samorodnitsky & Bjørn N. Jorgensen & Sarma Mandira & Jon Danielsson, 2005. "Subadditivity Re–Examined: the Case for Value-at-Risk," FMG Discussion Papers dp549, Financial Markets Group.
    4. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    5. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    6. Einmahl, John H.J. & de Haan, Laurens & Sinha, Ashoke Kumar, 1997. "Estimating the spectral measure of an extreme value distribution," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 143-171, October.
    7. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    8. Einmahl, J.H.J. & de Haan, L.F.M. & Piterbarg, V.I., 2001. "Nonparametric estimation of the spectral measure of an extreme value distribution," Other publications TiSEM c3485b9b-a0bd-456f-9baa-0, Tilburg University, School of Economics and Management.
    9. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    2. Durante Fabrizio & Puccetti Giovanni & Scherer Matthias, 2015. "A Journey from Statistics and Probability to Risk Theory An interview with Ludger Rüschendorf," Dependence Modeling, De Gruyter Open, vol. 3(1), pages 1-14, October.
    3. Tong, Bin & Wu, Chongfeng & Xu, Weidong, 2012. "Risk concentration of aggregated dependent risks: The second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 139-149.
    4. Georg Mainik & Georgi Mitov & Ludger Ruschendorf, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Papers 1505.04045, arXiv.org.
    5. Claudia Kluppelberg & Miriam Isabel Seifert, 2016. "Conditional loss probabilities for systems of economic agents sharing light-tailed claims with analysis of portfolio diversification benefits," Papers 1612.07132, arXiv.org.
    6. Oliver Kley & Claudia Kluppelberg & Gesine Reinert, 2014. "Risk in a large claims insurance market with bipartite graph structure," Papers 1410.8671, arXiv.org, revised Nov 2015.
    7. Mainik Georg & Rüschendorf Ludger, 2012. "Ordering of multivariate risk models with respect to extreme portfolio losses," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 73-106, March.
    8. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    9. Konstantinides, Dimitrios G. & Li, Jinzhu, 2016. "Asymptotic ruin probabilities for a multidimensional renewal risk model with multivariate regularly varying claims," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 38-44.
    10. Peter Tankov, 2014. "Tails of weakly dependent random vectors," Papers 1402.4683, arXiv.org, revised Jan 2016.
    11. repec:spr:aistmt:v:69:y:2017:i:5:d:10.1007_s10463-016-0574-9 is not listed on IDEAS
    12. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    13. Shi, Xiaojun & Tang, Qihe & Yuan, Zhongyi, 2017. "A limit distribution of credit portfolio losses with low default probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 156-167.

    More about this item

    Keywords

    Portfolio optimization; Risk management; Diversification effects; Multivariate extremes; 62G32; 62G05; 62G20; 62P05; C13; C14; G11;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:14:y:2010:i:4:p:593-623. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.