IDEAS home Printed from
   My bibliography  Save this article

A multivariate nonparametric test of independence


  • Bakirov, Nail K.
  • Rizzo, Maria L.
  • Szekely, Gábor J.


A new nonparametric approach to the problem of testing the joint independence of two or more random vectors in arbitrary dimension is developed based on a measure of association determined by interpoint distances. The population independence coefficient takes values between 0 and 1, and equals zero if and only if the vectors are independent. We show that the corresponding statistic has a finite limit distribution if and only if the two random vectors are independent; thus we have a consistent test for independence. The coefficient is an increasing function of the absolute value of product moment correlation in the bivariate normal case, and coincides with the absolute value of correlation in the Bernoulli case. A simple modification of the statistic is affine invariant. The independence coefficient and the proposed statistic both have a natural extension to testing the independence of several random vectors. Empirical performance of the test is illustrated via a comparative Monte Carlo study.

Suggested Citation

  • Bakirov, Nail K. & Rizzo, Maria L. & Szekely, Gábor J., 2006. "A multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1742-1756, September.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1742-1756

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Taskinen, Sara & Kankainen, Annaliisa & Oja, Hannu, 2003. "Sign test of independence between two random vectors," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 9-21, March.
    2. Deheuvels, Paul, 1981. "An asymptotic decomposition for multivariate distribution-free tests of independence," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 102-113, March.
    3. Sinha, Bimal Kumar & Wieand, H. S., 1977. "Multivariate nonparametric tests for independence," Journal of Multivariate Analysis, Elsevier, vol. 7(4), pages 572-583, December.
    4. Csörgo, Sándor, 1985. "Testing for independence by the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 290-299, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jentsch, Carsten & Leucht, Anne & Meyer, Marco & Beering, Carina, 2016. "Empirical characteristic functions-based estimation and distance correlation for locally stationary processes," Working Papers 16-15, University of Mannheim, Department of Economics.
    2. Jean-François Quessy, 2009. "Theoretical efficiency comparisons of independence tests based on multivariate versions of Spearman’s rho," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(3), pages 315-338, November.
    3. Baringhaus, Ludwig & Gaigall, Daniel, 2015. "On an independence test approach to the goodness-of-fit problem," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 193-208.
    4. Székely, Gábor J. & Rizzo, Maria L., 2013. "The distance correlation t-test of independence in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 193-213.
    5. Fan, Yanan & de Micheaux, Pierre Lafaye & Penev, Spiridon & Salopek, Donna, 2017. "Multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 189-210.
    6. Györfi, László & Walk, Harro, 2012. "Strongly consistent nonparametric tests of conditional independence," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1145-1150.
    7. Matsushita, Raul & Figueiredo, Annibal & Da Silva, Sergio, 2012. "A suggested statistical test for measuring bivariate nonlinear dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4891-4898.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1742-1756. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.