IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v16y1985i3p290-299.html
   My bibliography  Save this article

Testing for independence by the empirical characteristic function

Author

Listed:
  • Csörgo, Sándor

Abstract

Tests of total independence of d (>=2) random variables are proposed using the empirical characteristic function. The approach is parallel to that of Hoeffding, Blum, Kiefer, and Rosenblatt.

Suggested Citation

  • Csörgo, Sándor, 1985. "Testing for independence by the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 290-299, June.
  • Handle: RePEc:eee:jmvana:v:16:y:1985:i:3:p:290-299
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(85)90022-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilodeau, M. & Lafaye de Micheaux, P., 2005. "A multivariate empirical characteristic function test of independence with normal marginals," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 345-369, August.
    2. Meintanis, Simos G. & Iliopoulos, George, 2008. "Fourier methods for testing multivariate independence," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1884-1895, January.
    3. Bakirov, Nail K. & Rizzo, Maria L. & Szekely, Gábor J., 2006. "A multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1742-1756, September.
    4. Györfi, László & Walk, Harro, 2012. "Strongly consistent nonparametric tests of conditional independence," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1145-1150.
    5. Pinkse, Joris, 1998. "A consistent nonparametric test for serial independence," Journal of Econometrics, Elsevier, vol. 84(2), pages 205-231, June.
    6. Zeng, Peng, 2011. "A link-free method for testing the significance of predictors," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 550-562, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:16:y:1985:i:3:p:290-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.