IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v193y2023ics0047259x22001117.html
   My bibliography  Save this article

Conditional independence testing via weighted partial copulas

Author

Listed:
  • Bianchi, Pascal
  • Elgui, Kevin
  • Portier, François

Abstract

The test statistic proposed in this paper is an explicit Cramér–von Mises transformation of a certain weighted partial copula function. The regions of rejection are computed using a bootstrap procedure which mimics conditional independence by generating samples from the product measure of the estimated conditional marginals. Under certain (high-level) conditions (on the estimated conditional marginals), rates of convergence for the weighted partial copula process and the test statistic as well as the weak convergence under the null of the normalized test statistic are established. These high-level conditions on the estimated margins are shown to be valid in a variety of examples ranging from nonparametric kernel to linear quantile regression estimates. Finally, an experimental section demonstrates that the proposed test has competitive power compared to recent state-of-the-art methods such as kernel-based test.

Suggested Citation

  • Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:jmvana:v:193:y:2023:i:c:s0047259x22001117
    DOI: 10.1016/j.jmva.2022.105120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22001117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genest, Christian & Quessy, Jean-François & Rémillard, Bruno, 2006. "Local efficiency of a Cramer-von Mises test of independence," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 274-294, January.
    2. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
    3. Hoaek Haff, Ingrid & Segers, Johan, 2015. "Nonparametric estimation of pair-copula constructions with the empirical pair-copula," LIDAM Reprints ISBA 2015003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Su, Liangjun & White, Halbert, 2007. "A consistent characteristic function-based test for conditional independence," Journal of Econometrics, Elsevier, vol. 141(2), pages 807-834, December.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
    7. Portier, Francois & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," LIDAM Reprints ISBA 2018012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Gijbels, Irène & Veraverbeke, Noël & Omelka, Marel, 2011. "Conditional copulas, association measures and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1919-1932, May.
    9. Hilary Richardson & Grace Lisandrelli & Alexa Riobueno-Naylor & Rebecca Saxe, 2018. "Development of the social brain from age three to twelve years," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    10. Su, Liangjun & White, Halbert, 2008. "A Nonparametric Hellinger Metric Test For Conditional Independence," Econometric Theory, Cambridge University Press, vol. 24(4), pages 829-864, August.
    11. repec:taf:jnlbes:v:30:y:2012:i:2:p:275-287 is not listed on IDEAS
    12. Kato, Kengo, 2009. "Asymptotics for argmin processes: Convexity arguments," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1816-1829, September.
    13. Martin Huber & Blaise Melly, 2015. "A Test of the Conditional Independence Assumption in Sample Selection Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1144-1168, November.
    14. Beran, R. & Bilodeau, M. & Lafaye de Micheaux, P., 2007. "Nonparametric tests of independence between random vectors," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1805-1824, October.
    15. Deheuvels, Paul, 1981. "An asymptotic decomposition for multivariate distribution-free tests of independence," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 102-113, March.
    16. Bücher, Axel & Dette, Holger, 2010. "A note on bootstrap approximations for the empirical copula process," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1925-1932, December.
    17. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    18. Hobæk Haff, Ingrid & Segers, Johan, 2015. "Nonparametric estimation of pair-copula constructions with the empirical pair-copula," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 1-13.
    19. Rémillard, Bruno & Scaillet, Olivier, 2009. "Testing for equality between two copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 377-386, March.
    20. Christian Genest & Bruno Rémillard, 2004. "Test of independence and randomness based on the empirical copula process," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 335-369, December.
    21. Uwe Einmahl & David M. Mason, 2000. "An Empirical Process Approach to the Uniform Consistency of Kernel-Type Function Estimators," Journal of Theoretical Probability, Springer, vol. 13(1), pages 1-37, January.
    22. Xueqin Wang & Wenliang Pan & Wenhao Hu & Yuan Tian & Heping Zhang, 2015. "Conditional Distance Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1726-1734, December.
    23. Kojadinovic, Ivan & Holmes, Mark, 2009. "Tests of independence among continuous random vectors based on Cramr-von Mises functionals of the empirical copula process," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1137-1154, July.
    24. Segers, Johan, 2012. "Asymptotics of empirical copula processes under non-restrictive smoothness assumptions," LIDAM Reprints ISBA 2012009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    25. Irène Gijbels & Marek Omelka & Noël Veraverbeke, 2015. "Estimation of a Copula when a Covariate Affects only Marginal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1109-1126, December.
    26. Noël Veraverbeke & Marek Omelka & Irène Gijbels, 2011. "Estimation of a Conditional Copula and Association Measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(4), pages 766-780, December.
    27. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    28. Kuang-Yao Lee & Bing Li & Hongyu Zhao, 2016. "Variable selection via additive conditional independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1037-1055, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neumeyer, Natalie & Omelka, Marek & Hudecová, Šárka, 2019. "A copula approach for dependence modeling in multivariate nonparametric time series," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 139-162.
    2. Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
    3. Beare, Brendan K. & Seo, Juwon, 2020. "Randomization Tests Of Copula Symmetry," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1025-1063, December.
    4. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    5. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    6. Jonas Meier, 2020. "Multivariate Distribution Regression," Diskussionsschriften dp2023, Universitaet Bern, Departement Volkswirtschaft.
    7. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    8. Helmut Herwartz & Simone Maxand, 2020. "Nonparametric tests for independence: a review and comparative simulation study with an application to malnutrition data in India," Statistical Papers, Springer, vol. 61(5), pages 2175-2201, October.
    9. Grazian, Clara & Dalla Valle, Luciana & Liseo, Brunero, 2022. "Approximate Bayesian conditional copulas," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    10. Juwon Seo, 2018. "Randomization Tests for Equality in Dependence Structure," Papers 1811.02105, arXiv.org.
    11. Lopez, Olivier, 2019. "A censored copula model for micro-level claim reserving," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 1-14.
    12. Gijbels, Irène & Omelka, Marek & Pešta, Michal & Veraverbeke, Noël, 2017. "Score tests for covariate effects in conditional copulas," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 111-133.
    13. Jean-François Plante, 2017. "Rank correlation under categorical confounding," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-19, December.
    14. Berghaus, Betina & Segers, Johan, 2018. "Weak convergence of the weighted empirical beta copula process," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 266-281.
    15. Hobæk Haff, Ingrid & Segers, Johan, 2015. "Nonparametric estimation of pair-copula constructions with the empirical pair-copula," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 1-13.
    16. Alexis Derumigny & Jean-David Fermanian, 2018. "About Kendall's regression," Working Papers 2018-01, Center for Research in Economics and Statistics.
    17. Derumigny, Alexis & Fermanian, Jean-David, 2019. "A classification point-of-view about conditional Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 70-94.
    18. Irène Gijbels & Marek Omelka & Noël Veraverbeke, 2015. "Estimation of a Copula when a Covariate Affects only Marginal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1109-1126, December.
    19. Djaloud, Toihir Soulaimana & Seck, Cheikh Tidiane, 2024. "Nonparametric kernel estimation of conditional copula density," Statistics & Probability Letters, Elsevier, vol. 212(C).
    20. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2017. "Asymptotic behavior of the empirical multilinear copula process under broad conditions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 82-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:193:y:2023:i:c:s0047259x22001117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.