IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Nonparametric tests of independence between random vectors

  • Beran, R.
  • Bilodeau, M.
  • Lafaye de Micheaux, P.
Registered author(s):

    A nonparametric test of the mutual independence between many numerical random vectors is proposed. This test is based on a characterization of mutual independence defined from probabilities of half-spaces in a combinatorial formula of Möbius. As such, it is a natural generalization of tests of independence between univariate random variables using the empirical distribution function. If the number of vectors is p and there are n observations, the test is defined from a collection of processes Rn,A, where A is a subset of {1,...,p} of cardinality A>1, which are asymptotically independent and Gaussian. Without the assumption that each vector is one-dimensional with a continuous cumulative distribution function, any test of independence cannot be distribution free. The critical values of the proposed test are thus computed with the bootstrap which is shown to be consistent. Another similar test, with the same asymptotic properties, for the serial independence of a multivariate stationary sequence is also proposed. The proposed test works when some or all of the marginal distributions are singular with respect to Lebesgue measure. Moreover, in singular cases described in Section 4, the test inherits useful invariance properties from the general affine invariance property.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6WK9-4MX56D1-3/2/da23dd779d78bb7017887e2d80b6fd12
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 98 (2007)
    Issue (Month): 9 (October)
    Pages: 1805-1824

    as
    in new window

    Handle: RePEc:eee:jmvana:v:98:y:2007:i:9:p:1805-1824
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Deheuvels, Paul, 1981. "An asymptotic decomposition for multivariate distribution-free tests of independence," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 102-113, March.
    2. Ghoudi, Kilani & Kulperger, Reg J. & Rémillard, Bruno, 2001. "A Nonparametric Test of Serial Independence for Time Series and Residuals," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 191-218, November.
    3. Bilodeau, M. & Lafaye de Micheaux, P., 2005. "A multivariate empirical characteristic function test of independence with normal marginals," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 345-369, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:9:p:1805-1824. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.