IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v13y2004i2p335-369.html
   My bibliography  Save this article

Test of independence and randomness based on the empirical copula process

Author

Listed:
  • Christian Genest
  • Bruno Rémillard

Abstract

No abstract is available for this item.

Suggested Citation

  • Christian Genest & Bruno Rémillard, 2004. "Test of independence and randomness based on the empirical copula process," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 335-369, December.
  • Handle: RePEc:spr:testjl:v:13:y:2004:i:2:p:335-369
    DOI: 10.1007/BF02595777
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02595777
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02595777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Hallin & Thomas S. Ferguson & Christian Genest, 2000. "Kendall's tau for serial dependence," ULB Institutional Repository 2013/2093, ULB -- Universite Libre de Bruxelles.
    2. Yongmiao Hong, 1998. "Testing for pairwise serial independence via the empirical distribution function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 429-453.
    3. Deheuvels, Paul, 1981. "An asymptotic decomposition for multivariate distribution-free tests of independence," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 102-113, March.
    4. Barbe, Philippe & Genest, Christian & Ghoudi, Kilani & Rémillard, Bruno, 1996. "On Kendall's Process," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 197-229, August.
    5. Marc Hallin & Jean-François Ingenbleek & Madan Lal Puri, 1984. "Linear serial rank tests for randomness against ARMA alternatives," ULB Institutional Repository 2013/2167, ULB -- Universite Libre de Bruxelles.
    6. Marc Hallin & Madan Lal Puri, 1992. "Rank tests for time-series analysis: a survey," ULB Institutional Repository 2013/2229, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Hallin & Khalid Rifi, 1997. "A Berry-Esséen Theorem for Serial Rank Statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(4), pages 777-799, December.
    2. Pinkse, Joris, 1998. "A consistent nonparametric test for serial independence," Journal of Econometrics, Elsevier, vol. 84(2), pages 205-231, June.
    3. Hallin, M. & Vermandele, C. & Werker, B.J.M., 2003. "Serial and Nonserial Sign-and-Rank Statistics : Asymptotic Representation and Asymptotic Normality," Discussion Paper 2003-23, Tilburg University, Center for Economic Research.
    4. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
    5. Lanh Tran & Ba Chu & Chunfeng Huang & Kim P. Huynh, 2014. "Adaptive permutation tests for serial independence," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 183-208, August.
    6. Nasri, Bouchra R., 2022. "Tests of serial dependence for multivariate time series with arbitrary distributions," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    7. Durante Fabrizio & Puccetti Giovanni & Scherer Matthias & Vanduffel Steven, 2016. "Stat Trek. An interview with Christian Genest," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-14, May.
    8. Ai, Chunrong & Sun, Li-Hsien & Zhang, Zheng & Zhu, Liping, 2024. "Testing unconditional and conditional independence via mutual information," Journal of Econometrics, Elsevier, vol. 240(2).
    9. Ghoudi, Kilani & Kulperger, Reg J. & Rémillard, Bruno, 2001. "A Nonparametric Test of Serial Independence for Time Series and Residuals," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 191-218, November.
    10. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    11. repec:wyi:journl:002087 is not listed on IDEAS
    12. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    13. Mainik, Georg, 2015. "Risk aggregation with empirical margins: Latin hypercubes, empirical copulas, and convergence of sum distributions," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 197-216.
    14. Pycke, Jean-Renaud, 2003. "Multivariate extensions of the Anderson-Darling process," Statistics & Probability Letters, Elsevier, vol. 63(4), pages 387-399, July.
    15. Dufour, Jean-Marie & Farhat, Abdeljelil & Hallin, Marc, 2006. "Distribution-free bounds for serial correlation coefficients in heteroskedastic symmetric time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 123-142, January.
    16. Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
    17. M. Hallin & D. La Vecchia & H. Liu, 2022. "Center-Outward R-Estimation for Semiparametric VARMA Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 925-938, April.
    18. Gautier Marti & Frank Nielsen & Philippe Donnat & S'ebastien Andler, 2016. "On clustering financial time series: a need for distances between dependent random variables," Papers 1603.07822, arXiv.org.
    19. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    20. Koning, Alex J. & Protasov, Vladimir, 2003. "Tail behaviour of Gaussian processes with applications to the Brownian pillow," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 370-397, November.
    21. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:13:y:2004:i:2:p:335-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.