IDEAS home Printed from
   My bibliography  Save this article

On Kendall's Process


  • Barbe, Philippe
  • Genest, Christian
  • Ghoudi, Kilani
  • Rémillard, Bruno


LetZ1, ..., Znbe a random sample of sizen[greater-or-equal, slanted]2 from ad-variate continuous distribution functionH, and letVi, nstand for the proportion of observationsZj,j[not equal to]i, such thatZj[less-than-or-equals, slant]Zicomponentwise. The purpose of this paper is to examine the limiting behavior of the empirical distribution functionKnderived from the (dependent) pseudo-observationsVi, n. This random quantity is a natural nonparametric estimator ofK, the distribution function of the random variableV=H(Z), whose expectation is an affine transformation of the population version of Kendall's tau in the cased=2. Since the sample version of[tau]is related in the same way to the mean ofKn, Genest and Rivest (1993,J. Amer. Statist. Assoc.) suggested that[formula]be referred to as Kendall's process. Weak regularity conditions onKandHare found under which this centered process is asymptotically Gaussian, and an explicit expression for its limiting covariance function is given. These conditions, which are fairly easy to check, are seen to apply to large classes of multivariate distributions.

Suggested Citation

  • Barbe, Philippe & Genest, Christian & Ghoudi, Kilani & Rémillard, Bruno, 1996. "On Kendall's Process," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 197-229, August.
  • Handle: RePEc:eee:jmvana:v:58:y:1996:i:2:p:197-229

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:58:y:1996:i:2:p:197-229. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.