IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Smooth Minimum Distance Estimation and Testing with Conditional Estimating Equations: Uniform in Bandwidth Theory

  • Lavergne, Pascal
  • Patilea, Valentin
Registered author(s):

    We study the influence of a bandwidth parameter in inference with conditional estimating equations. In that aim, we propose a new class of smooth minimum distance estimators and we develop a theory that focuses on uniformity in bandwidth. We establish a vn-asymptotic representation of our estimator as a process indexed by a bandwidth that can vary within a wide range including bandwidths independent of the sample size. We develop an efficient version of our estimator. We also study its behavior in misspecified models. We develop a procedure based on a distance metric statistic for testing restrictions on parameters as well as a bootstrap technique to account for the bandwidth’s influence. Our new methods are simple to implement, apply to non-smooth problems, and perform well in our simulations.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://idei.fr/sites/default/files/medias/doc/by/lavergne/smdcomplete.pdf
    File Function: Full text
    Download Restriction: no

    Paper provided by Toulouse School of Economics (TSE) in its series TSE Working Papers with number 13-404.

    as
    in new window

    Length:
    Date of creation: Mar 2013
    Date of revision:
    Publication status: Published in Journal of Econometrics, vol.�177, n°1, novembre 2013, p.�47-59.
    Handle: RePEc:tse:wpaper:27219
    Contact details of provider: Phone: (+33) 5 61 12 86 23
    Web page: http://www.tse-fr.eu/

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-37, January.
    2. Sherman, Robert P., 1994. "U-Processes in the Analysis of a Generalized Semiparametric Regression Estimator," Econometric Theory, Cambridge University Press, vol. 10(02), pages 372-395, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:27219. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.