IDEAS home Printed from https://ideas.repec.org/p/crd/wpaper/08010.html
   My bibliography  Save this paper

Local GMM Estimation of Time Series Models with Conditional Moment Restrictions

Author

Abstract

This paper investigates statistical properties of the local GMM (LGMM) estimator for some time series models defined by conditional moment restrictions. First, we consider Markov processes with possible conditional heteroskedasticity of unknown form and establish the consistency, asymptotic normality, and semi-parametric efficiency of the estimator. Second, inspired by simulation results showing that the LGMM estimator has a significantly smaller bias than the OLS estimator, we undertake a higher-order asymptotic expansion and analyze the bias properties of the LGMM estimator. The structure of the asymptotic expansion of the LGMM estimator reveals an interesting contrast with the OLS estimator that helps to explain the bias reduction in the LGMM estimator. The practical importance of these findings is evaluated in terms of a bond and option pricing exercise based on a diffusion model for spot interest rate.

Suggested Citation

  • Nikolay Gospodinov & Taisuke Otsu, 2008. "Local GMM Estimation of Time Series Models with Conditional Moment Restrictions," Working Papers 08010, Concordia University, Department of Economics.
  • Handle: RePEc:crd:wpaper:08010
    as

    Download full text from publisher

    File URL: http://alcor.concordia.ca/~gospodin/research/cel_ar.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stanislav Anatolyev, 2005. "GMM, GEL, Serial Correlation, and Asymptotic Bias," Econometrica, Econometric Society, vol. 73(3), pages 983-1002, May.
    2. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(06), pages 797-834, December.
    3. Kuersteiner, Guido M., 2002. "Efficient Iv Estimation For Autoregressive Models With Conditional Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 18(03), pages 547-583, June.
    4. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    5. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    6. Song Xi Chen & Wolfgang Härdle & Ming Li, 2003. "An empirical likelihood goodness-of-fit test for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 663-678.
    7. Carrasco, Marine & Florens, Jean-Pierre, 2014. "On The Asymptotic Efficiency Of Gmm," Econometric Theory, Cambridge University Press, vol. 30(02), pages 372-406, April.
    8. Manuel A. Domínguez & Ignacio N. Lobato, 2004. "Consistent Estimation of Models Defined by Conditional Moment Restrictions," Econometrica, Econometric Society, vol. 72(5), pages 1601-1615, September.
    9. Shiqing Ling, 2004. "Estimation and testing stationarity for double-autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 63-78.
    10. Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1433-1445, October.
    11. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    12. Beach, Charles M & MacKinnon, James G, 1978. "A Maximum Likelihood Procedure for Regression with Autocorrelated Errors," Econometrica, Econometric Society, vol. 46(1), pages 51-58, January.
    13. Antoine, Bertille & Bonnal, Helene & Renault, Eric, 2007. "On the efficient use of the informational content of estimating equations: Implied probabilities and Euclidean empirical likelihood," Journal of Econometrics, Elsevier, vol. 138(2), pages 461-487, June.
    14. Kenneth West & Ka-fu Wong & Stanislav Anatolyev, 2009. "Instrumental Variables Estimation of Heteroskedastic Linear Models Using All Lags of Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 441-467.
    15. Ball, Clifford A. & Torous, Walter N., 1996. "Unit roots and the estimation of interest rate dynamics," Journal of Empirical Finance, Elsevier, vol. 3(2), pages 215-238, June.
    16. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    17. van Giersbergen, Noud P.A., 2005. "On the effect of deterministic terms on the bias in stable AR models," Economics Letters, Elsevier, vol. 89(1), pages 75-82, October.
    18. Newey, Whitney K, 1990. "Efficient Instrumental Variables Estimation of Nonlinear Models," Econometrica, Econometric Society, vol. 58(4), pages 809-837, July.
    19. Lewbel, Arthur, 2007. "A local generalized method of moments estimator," Economics Letters, Elsevier, vol. 94(1), pages 124-128, January.
    20. Smith, Richard J., 2007. "Efficient information theoretic inference for conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 138(2), pages 430-460, June.
    21. Kuersteiner, Guido M., 2001. "Optimal instrumental variables estimation for ARMA models," Journal of Econometrics, Elsevier, vol. 104(2), pages 359-405, September.
    22. Carrasco, Marine & Chernov, Mikhail & Florens, Jean-Pierre & Ghysels, Eric, 2007. "Efficient estimation of general dynamic models with a continuum of moment conditions," Journal of Econometrics, Elsevier, vol. 140(2), pages 529-573, October.
    23. Peter C. B. Phillips, 2005. "Jackknifing Bond Option Prices," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 707-742.
    24. Su, Liangjun & White, Halbert, 2014. "Testing conditional independence via empirical likelihood," Journal of Econometrics, Elsevier, vol. 182(1), pages 27-44.
    25. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    26. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    27. David A. Chapman & Neil D. Pearson, 2000. "Is the Short Rate Drift Actually Nonlinear?," Journal of Finance, American Finance Association, vol. 55(1), pages 355-388, February.
    28. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
    29. Donald, Stephen G. & Newey, Whitney K., 2000. "A jackknife interpretation of the continuous updating estimator," Economics Letters, Elsevier, vol. 67(3), pages 239-243, June.
    30. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhentao Shi & Huanhuan Zheng, 2018. "Structural Estimation of Behavioral Heterogeneity," Papers 1802.03735, arXiv.org, revised Jun 2018.
    2. Valerio Scalone, 2018. "Estimating Non-Linear DSGEs with the Approximate Bayesian Computation: an application to the Zero Lower Bound," Working papers 688, Banque de France.
    3. Chambers, Marcus J., 2013. "Jackknife estimation of stationary autoregressive models," Journal of Econometrics, Elsevier, vol. 172(1), pages 142-157.
    4. Crudu, Federico & Sándor, Zsolt, 2011. "On the finite-sample properties of conditional empirical likelihood estimators," MPRA Paper 34116, University Library of Munich, Germany.

    More about this item

    Keywords

    Conditional moment restrictions; Local GMM; Higher-order expansion; Conditional heteroskedasticity;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crd:wpaper:08010. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Economics Department). General contact details of provider: http://edirc.repec.org/data/deconca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.