IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v73y2005i3p983-1002.html
   My bibliography  Save this article

GMM, GEL, Serial Correlation, and Asymptotic Bias

Author

Listed:
  • Stanislav Anatolyev

Abstract

For stationary time series models with serial correlation, we consider generalized method of moments (GMM) estimators that use heteroskedasticity and autocorrelation consistent (HAC) positive definite weight matrices and generalized empirical likelihood (GEL) estimators based on smoothed moment conditions. Following the analysis of Newey and Smith (2004) for independent observations, we derive second order asymptotic biases of these estimators. The inspection of bias expressions reveals that the use of smoothed GEL, in contrast to GMM, removes the bias component associated with the correlation between the moment function and its derivative, while the bias component associated with third moments depends on the employed kernel function. We also analyze the case of no serial correlation, and find that the seemingly unnecessary smoothing and HAC estimation can reduce the bias for some of the estimators. Copyright The Econometric Society 2005.

Suggested Citation

  • Stanislav Anatolyev, 2005. "GMM, GEL, Serial Correlation, and Asymptotic Bias," Econometrica, Econometric Society, vol. 73(3), pages 983-1002, May.
  • Handle: RePEc:ecm:emetrp:v:73:y:2005:i:3:p:983-1002
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0262.2005.00601.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:73:y:2005:i:3:p:983-1002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.