IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v65y2003i3p663-678.html
   My bibliography  Save this article

An empirical likelihood goodness-of-fit test for time series

Author

Listed:
  • Song Xi Chen
  • Wolfgang Härdle
  • Ming Li

Abstract

Standard goodness-of-fit tests for a parametric regression model against a series of nonparametric alternatives are based on residuals arising from a fitted model. When a parametric regression model is compared with a nonparametric model, goodness-of-fit testing can be naturally approached by evaluating the likelihood of the parametric model within a nonparametric framework. We employ the empirical likelihood for an "&agr;"-mixing process to formulate a test statistic that measures the goodness of fit of a parametric regression model. The technique is based on a comparison with kernel smoothing estimators. The empirical likelihood formulation of the test has two attractive features. One is its automatic consideration of the variation that is associated with the nonparametric fit due to empirical likelihood's ability to Studentize internally. The other is that the asymptotic distribution of the test statistic is free of unknown parameters, avoiding plug-in estimation. We apply the test to a discretized diffusion model which has recently been considered in financial market analysis. Copyright 2003 Royal Statistical Society.

Suggested Citation

  • Song Xi Chen & Wolfgang Härdle & Ming Li, 2003. "An empirical likelihood goodness-of-fit test for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 663-678.
  • Handle: RePEc:bla:jorssb:v:65:y:2003:i:3:p:663-678
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/1467-9868.00408
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eckhard Platen, 2000. "Risk Premia and Financial Modelling Without Measure Transformation," Research Paper Series 45, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Pham, Tuan D. & Tran, Lanh T., 1985. "Some mixing properties of time series models," Stochastic Processes and their Applications, Elsevier, vol. 19(2), pages 297-303, April.
    3. Hjellvik, Vidar & Yao, Qiwei & Tjostheim, Dag, 1998. "Linearity testing using local polynominal approximation," LSE Research Online Documents on Economics 6638, London School of Economics and Political Science, LSE Library.
    4. Horowitz, Joel L & Spokoiny, Vladimir G, 2001. "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Nonparametric Alternative," Econometrica, Econometric Society, vol. 69(3), pages 599-631, May.
    5. Tripathi, Gautam & Kitamura, Yuichi, 2000. "On testing conditional moment restrictions: The canonical case," SFB 373 Discussion Papers 2000,88, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:65:y:2003:i:3:p:663-678. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.