IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v65y2003i3p663-678.html

An empirical likelihood goodness‐of‐fit test for time series

Author

Listed:
  • Song Xi Chen
  • Wolfgang Härdle
  • Ming Li

Abstract

Summary. Standard goodness‐of‐fit tests for a parametric regression model against a series of nonparametric alternatives are based on residuals arising from a fitted model. When a parametric regression model is compared with a nonparametric model, goodness‐of‐fit testing can be naturally approached by evaluating the likelihood of the parametric model within a nonparametric framework. We employ the empirical likelihood for an α‐mixing process to formulate a test statistic that measures the goodness of fit of a parametric regression model. The technique is based on a comparison with kernel smoothing estimators. The empirical likelihood formulation of the test has two attractive features. One is its automatic consideration of the variation that is associated with the nonparametric fit due to empirical likelihood's ability to Studentize internally. The other is that the asymptotic distribution of the test statistic is free of unknown parameters, avoiding plug‐in estimation. We apply the test to a discretized diffusion model which has recently been considered in financial market analysis.

Suggested Citation

  • Song Xi Chen & Wolfgang Härdle & Ming Li, 2003. "An empirical likelihood goodness‐of‐fit test for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 663-678, August.
  • Handle: RePEc:bla:jorssb:v:65:y:2003:i:3:p:663-678
    DOI: 10.1111/1467-9868.00408
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00408
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:65:y:2003:i:3:p:663-678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.