IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A new class of asymptotically efficient estimators for moment condition models

  • Fan, Yanqin
  • Gentry, Matthew
  • Li, Tong
Registered author(s):

    In this paper, we propose a new class of asymptotically efficient estimators for moment condition models. These estimators share the same higher order bias properties as the generalized empirical likelihood estimators and once bias corrected, have the same higher order efficiency properties as the bias corrected generalized empirical likelihood estimators. Unlike the generalized empirical likelihood estimators, our new estimators are much easier to compute. A simulation study finds that our estimators have better finite sample performance than the two-step GMM, and compare well to several potential alternatives in terms of both computational stability and overall performance.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Econometrics.

    Volume (Year): 162 (2011)
    Issue (Month): 2 (June)
    Pages: 268-277

    in new window

    Handle: RePEc:eee:econom:v:162:y:2011:i:2:p:268-277
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Newey, W.K., 1989. "Efficient Instrumental Variables Estimation Of Nonlinear Models," Papers 341, Princeton, Department of Economics - Econometric Research Program.
    2. Joseph G. Altonji & Lewis M. Segal, 1994. "Small sample bias in GMM estimation of covariance structures," Working Paper Series, Macroeconomic Issues 94-8, Federal Reserve Bank of Chicago.
    3. Guido W. Imbens & Phillip Johnson & Richard H. Spady, 1995. "Information Theoretic Approaches to Inference in Moment Condition Models," Harvard Institute of Economic Research Working Papers 1736, Harvard - Institute of Economic Research.
    4. Smith, Richard J., 2007. "Efficient information theoretic inference for conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 138(2), pages 430-460, June.
    5. Hélène Bonnal & Éric Renault, 2004. "On the Efficient Use of the Informational Content of Estimating Equations: Implied Probabilities and Euclidean Empirical Likelihood," CIRANO Working Papers 2004s-18, CIRANO.
    6. Donald W.K. Andrews, 2000. "Equivalence of the Higher-order Asymptotic Efficiency of k-step and Extremum Statistics," Cowles Foundation Discussion Papers 1269, Cowles Foundation for Research in Economics, Yale University.
    7. Patrik Guggenberger, 2008. "Finite Sample Evidence Suggesting a Heavy Tail Problem of the Generalized Empirical Likelihood Estimator," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 526-541.
    8. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
    9. Pastorello, Sergio & Patilea, Valentin & Renault, Eric, 2003. "Iterative and Recursive Estimation in Structural Nonadaptive Models: Rejoinder," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 503-09, October.
    10. Bryan W. Brown & Whitney K. Newey, 1998. "Efficient Semiparametric Estimation of Expectations," Econometrica, Econometric Society, vol. 66(2), pages 453-464, March.
    11. Shane M. Sherlund, 2004. "Quasi Empirical Likelihood Estimation of Moment Condition Models," Econometric Society 2004 North American Summer Meetings 507, Econometric Society.
    12. Pastorello, Sergio & Patilea, Valentin & Renault, Eric, 2003. "Iterative and Recursive Estimation in Structural Nonadaptive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 449-82, October.
    13. repec:ebl:ecbull:v:3:y:2005:i:13:p:1-6 is not listed on IDEAS
    14. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
    15. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    16. Joaquim J.S. Ramalho & Richard J. Smith, 2005. "Goodness of Fit Tests for Moment Condition Models," Economics Working Papers 5_2005, University of Évora, Department of Economics (Portugal).
    17. Patrik Guggenberger & Jinyong Hahn, 2005. "Finite Sample Properties of the Two-Step Empirical Likelihood Estimator," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 247-263.
    18. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    19. Whitney Newey & Richard Smith, 2003. "Higher order properties of GMM and generalised empirical likelihood estimators," CeMMAP working papers CWP04/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Donald, Stephen G. & Newey, Whitney K., 2000. "A jackknife interpretation of the continuous updating estimator," Economics Letters, Elsevier, vol. 67(3), pages 239-243, June.
    21. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    22. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, 07.
    23. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-80, July.
    24. Robinson, Peter M, 1988. "The Stochastic Difference between Econometric Statistics," Econometrica, Econometric Society, vol. 56(3), pages 531-48, May.
    25. Song, Peter X.K. & Fan, Yanqin & Kalbfleisch, John D., 2005. "Maximization by Parts in Likelihood Inference," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1145-1158, December.
    26. Imbens, Guido W, 2002. "Generalized Method of Moments and Empirical Likelihood," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 493-506, October.
    27. Smith, Richard J, 1997. "Alternative Semi-parametric Likelihood Approaches to Generalised Method of Moments Estimation," Economic Journal, Royal Economic Society, vol. 107(441), pages 503-19, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:162:y:2011:i:2:p:268-277. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.