IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v18y2002i05p1040-1085_18.html

EQUIVALENCE OF THE HIGHER ORDER ASYMPTOTIC EFFICIENCY OF k-STEP AND EXTREMUM STATISTICS

Author

Listed:
  • Andrews, Donald W.K.

Abstract

It is well known that a one-step scoring estimator that starts from any N1/2-consistent estimator has the same first-order asymptotic efficiency as the maximum likelihood estimator. This paper extends this result to k-step estimators and test statistics for k ≥ 1, higher order asymptotic efficiency, and general extremum estimators and test statistics.The paper shows that a k-step estimator has the same higher order asymptotic efficiency, to any given order, as the extremum estimator toward which it is stepping, provided (i) k is sufficiently large, (ii) some smoothness and moment conditions hold, and (iii) a condition on the initial estimator holds.For example, for the Newton–Raphson k-step estimator based on an initial estimator in a wide class, we obtain asymptotic equivalence to integer order s provided 2k ≥ s + 1. Thus, for k = 1, 2, and 3, one obtains asymptotic equivalence to first, third, and seventh orders, respectively. This means that the maximum differences between the probabilities that the (N1/2-normalized) k-step and extremum estimators lie in any convex set are o(1), o(N−3/2), and o(N−3), respectively.

Suggested Citation

  • Andrews, Donald W.K., 2002. "EQUIVALENCE OF THE HIGHER ORDER ASYMPTOTIC EFFICIENCY OF k-STEP AND EXTREMUM STATISTICS," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1040-1085, October.
  • Handle: RePEc:cup:etheor:v:18:y:2002:i:05:p:1040-1085_18
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466602185021/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiroyuki Kasahara & Katsumi Shimotsu, 2006. "Nested Pseudo-likelihood Estimation And Bootstrap-based Inference For Structural Discrete Markov Decision Models," Working Paper 1063, Economics Department, Queen's University.
    2. Arvanitis Stelios & Demos Antonis, 2018. "On the Validity of Edgeworth Expansions and Moment Approximations for Three Indirect Inference Estimators," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-38, January.
    3. Inoue, Atsushi & Shintani, Mototsugu, 2006. "Bootstrapping GMM estimators for time series," Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
    4. Fan, Yanqin & Gentry, Matthew & Li, Tong, 2011. "A new class of asymptotically efficient estimators for moment condition models," Journal of Econometrics, Elsevier, vol. 162(2), pages 268-277, June.
    5. Xuexin Wang, 2020. "A new class of tests for overidentifying restrictions in moment condition models," Econometric Reviews, Taylor & Francis Journals, vol. 39(5), pages 495-509, May.
    6. Antonis Demos & Stelios Arvanitis, 2010. "Stochastic Expansions and Moment Approximations for Three Indirect Estimators," DEOS Working Papers 1004, Athens University of Economics and Business.
    7. Dennis Kristensen & Bernard Salanié, 2010. "Higher Order Improvements for Approximate Estimators," CAM Working Papers 2010-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    8. Stelios Arvanitis & Antonis Demos, "undated". "A Class of Indirect Inference Estimators: Higher Order Asymptotics and Approximate Bias Correction (Revised)," DEOS Working Papers 1411, Athens University of Economics and Business, revised 23 Sep 2014.
    9. Yixiao Sun & Peter C.B. Phillips, 2008. "Optimal Bandwidth Choice for Interval Estimation in GMM Regression," Cowles Foundation Discussion Papers 1661, Cowles Foundation for Research in Economics, Yale University.
    10. Rasmus Tangsgaard Varneskov, 2011. "Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise," CREATES Research Papers 2011-31, Department of Economics and Business Economics, Aarhus University.
    11. Antonis Demos & Stelios Arvanitis, 2010. "A New Class of Indirect Estimators and Bias Correction," DEOS Working Papers 1023, Athens University of Economics and Business.
    12. Politis, D N, 2009. "Higher-Order Accurate, Positive Semi-definite Estimation of Large-Sample Covariance and Spectral Density Matrices," University of California at San Diego, Economics Working Paper Series qt66w826hz, Department of Economics, UC San Diego.
    13. Paulo M.D.C. Parente & Richard J. Smith, 2018. "Generalised Empirical Likelihood Kernel Block Bootstrapping," Working Papers REM 2018/55, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    14. Arvanitis Stelios & Demos Antonis, 2014. "Valid Locally Uniform Edgeworth Expansions for a Class of Weakly Dependent Processes or Sequences of Smooth Transformations," Journal of Time Series Econometrics, De Gruyter, vol. 6(2), pages 183-235, July.
    15. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2008. "Pseudo-likelihood estimation and bootstrap inference for structural discrete Markov decision models," Journal of Econometrics, Elsevier, vol. 146(1), pages 92-106, September.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:18:y:2002:i:05:p:1040-1085_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.