IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

EQUIVALENCE OF THE HIGHER ORDER ASYMPTOTIC EFFICIENCY OF k-STEP AND EXTREMUM STATISTICS

  • Andrews, Donald W.K.

It is well known that a one-step scoring estimator that starts from any N^{1/2}-consistent estimator has the same first-order asymptotic efficiency as the maximum likelihood estimator. This paper extends this result to k-step estimators and test statistics for k >= 1, higher-order asymptotic efficiency, and general extremum estimators and test statistics. The paper shows that a k-step estimator has the same higher-order asymptotic efficiency, to any given order, as the extremum estimator towards which it is stepping, provided (i) k is sufficiently large, (ii) some smoothness and moment conditions hold, and (iii) a condition on the initial estimator holds. For example, for the Newton-Raphson k-step estimator, we obtain asymptotic equivalence to integer order s provided 2^{k} >= s + 1. Thus, for k = 1, 2, and 3, one obtains asymptotic equivalence to first, third, and seventh orders respectively. This means that the maximum differences between the probabilities that the (N^{1/2}-normalized) k-step and extremum estimators lie in any convex set are o(1), o(N^{-3/2}), and o(N^{-3}) respectively.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://journals.cambridge.org/abstract_S0266466602185021
File Function: link to article abstract page
Download Restriction: no

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 18 (2002)
Issue (Month): 05 (October)
Pages: 1040-1085

as
in new window

Handle: RePEc:cup:etheor:v:18:y:2002:i:05:p:1040-1085_18
Contact details of provider: Postal: Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK
Web page: http://journals.cambridge.org/jid_ECT
Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Robinson, Peter M, 1988. "The Stochastic Difference between Econometric Statistics," Econometrica, Econometric Society, vol. 56(3), pages 531-48, May.
  2. Rothenberg, Thomas J., 1984. "Approximating the distributions of econometric estimators and test statistics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 15, pages 881-935 Elsevier.
  3. Pfanzagl, J. & Wefelmeyer, W., 1978. "A third-order optimum property of the maximum likelihood estimator," Journal of Multivariate Analysis, Elsevier, vol. 8(1), pages 1-29, March.
  4. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:18:y:2002:i:05:p:1040-1085_18. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.