IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00867804.html
   My bibliography  Save this paper

The Indirect Continuous-GMM Estimation

Author

Listed:
  • Rachidi Kotchoni

    (THEMA - Théorie économique, modélisation et applications - UCP - Université de Cergy Pontoise - Université Paris-Seine - CNRS - Centre National de la Recherche Scientifique)

Abstract

A curse of dimensionality arises when using the Continuum-GMM procedure to estimate large dimensional models. Two solutions are proposed, both of which convert the high di- mensional model into a continuum of reduced information sets. Under certain regularity conditions, each reduced information set can be used to produce a consistent estimator of the parameter of interest. An indirect CGMM estimator is obtained by optimally aggregating all such consistent estimators. The simulation results suggest that the indirect CGMM procedure makes an e¢ cient use of the information content of moment restrictions

Suggested Citation

  • Rachidi Kotchoni, 2013. "The Indirect Continuous-GMM Estimation," Working Papers hal-00867804, HAL.
  • Handle: RePEc:hal:wpaper:hal-00867804
    Note: View the original document on HAL open archive server: https://hal.science/hal-00867804
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00867804/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Manuel A. Domínguez & Ignacio N. Lobato, 2004. "Consistent Estimation of Models Defined by Conditional Moment Restrictions," Econometrica, Econometric Society, vol. 72(5), pages 1601-1615, September.
    3. Taufer, Emanuele & Leonenko, Nikolai & Bee, Marco, 2011. "Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2525-2539, August.
    4. Knight, John L. & Yu, Jun, 2002. "Empirical Characteristic Function In Time Series Estimation," Econometric Theory, Cambridge University Press, vol. 18(3), pages 691-721, June.
    5. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    6. Pascal Lavergne & Valentin Patilea, 2008. "Smooth Minimum Distance Estimation and Testing in Conditional Moment Restrictions Models: Uniform in Bandwidth Theory," Discussion Papers dp08-08, Department of Economics, Simon Fraser University.
    7. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(6), pages 797-834, December.
    8. Kotchoni, Rachidi, 2012. "Applications of the characteristic function-based continuum GMM in finance," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3599-3622.
    9. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    10. Carrasco, Marine & Chernov, Mikhail & Florens, Jean-Pierre & Ghysels, Eric, 2007. "Efficient estimation of general dynamic models with a continuum of moment conditions," Journal of Econometrics, Elsevier, vol. 140(2), pages 529-573, October.
    11. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    12. Li, Junye & Favero, Carlo & Ortu, Fulvio, 2012. "A spectral estimation of tempered stable stochastic volatility models and option pricing," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3645-3658.
    13. Cragg, John G, 1983. "More Efficient Estimation in the Presence of Heteroscedasticity of Unknown Form," Econometrica, Econometric Society, vol. 51(3), pages 751-763, May.
    14. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    15. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
    16. Antoine, Bertille & Lavergne, Pascal, 2014. "Conditional moment models under semi-strong identification," Journal of Econometrics, Elsevier, vol. 182(1), pages 59-69.
    17. Jiang, George J & Knight, John L, 2002. "Estimation of Continuous-Time Processes via the Empirical Characteristic Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 198-212, April.
    18. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    19. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    20. Jun Yu, 2004. "Empirical Characteristic Function Estimation and Its Applications," Econometric Reviews, Taylor & Francis Journals, vol. 23(2), pages 93-123.
    21. Singleton, Kenneth J., 2001. "Estimation of affine asset pricing models using the empirical characteristic function," Journal of Econometrics, Elsevier, vol. 102(1), pages 111-141, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poloni, Federico & Sbrana, Giacomo, 2019. "Closed-form results for vector moving average models with a univariate estimation approach," Econometrics and Statistics, Elsevier, vol. 10(C), pages 27-52.
    2. Stojanović, Vladica S. & Popović, Biljana Č. & Milovanović, Gradimir V., 2016. "The Split-SV model," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 560-581.
    3. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    2. Kotchoni, Rachidi, 2012. "Applications of the characteristic function-based continuum GMM in finance," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3599-3622.
    3. Carrasco, Marine & Kotchoni, Rachidi, 2017. "Efficient Estimation Using The Characteristic Function," Econometric Theory, Cambridge University Press, vol. 33(2), pages 479-526, April.
    4. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    5. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    6. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    7. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    8. Parente, Paulo M.D.C. & Smith, Richard J., 2017. "Tests of additional conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 200(1), pages 1-16.
    9. Amengual, Dante & Carrasco, Marine & Sentana, Enrique, 2020. "Testing distributional assumptions using a continuum of moments," Journal of Econometrics, Elsevier, vol. 218(2), pages 655-689.
    10. Stojanović, Vladica S. & Popović, Biljana Č. & Milovanović, Gradimir V., 2016. "The Split-SV model," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 560-581.
    11. Michael Rockinger & Maria Semenova, 2005. "Estimation of Jump-Diffusion Process vis Empirical Characteristic Function," FAME Research Paper Series rp150, International Center for Financial Asset Management and Engineering.
    12. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    13. Han, Hyojin, 2020. "On the identification of models with conditional characteristic functions," Economics Letters, Elsevier, vol. 186(C).
    14. Kunyang Song & Feiyu Jiang & Ke Zhu, 2024. "Estimation for conditional moment models based on martingale difference divergence," Papers 2404.11092, arXiv.org.
    15. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    16. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    17. Carrasco, Marine, 2012. "A regularization approach to the many instruments problem," Journal of Econometrics, Elsevier, vol. 170(2), pages 383-398.
    18. Bertille Antoine & Xiaolin Sun, 2022. "Partially linear models with endogeneity: a conditional moment-based approach [Efficient estimation of models with conditional moment restrictions containing unknown functions]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 256-275.
    19. Andrii Babii, 2022. "High-Dimensional Mixed-Frequency IV Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1470-1483, October.
    20. Hsu, Shih-Hsun & Kuan, Chung-Ming, 2011. "Estimation of conditional moment restrictions without assuming parameter identifiability in the implied unconditional moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 87-99.
    21. Gagliardini, Patrick & Gouriéroux, Christian, 2019. "Identification by Laplace transforms in nonlinear time series and panel models with unobserved stochastic dynamic effects," Journal of Econometrics, Elsevier, vol. 208(2), pages 613-637.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00867804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.