IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01386060.html

Efficient Estimation Using the Characteristic Function

Author

Listed:
  • Marine Carrasco
  • Rachidi Kotchoni

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

Abstract

The method of moments procedure proposed by Carrasco and Florens (2000) permits full exploitation of the information contained in the characteristic function and yields an estimator which is asymptotically as efficient as the maximum likelihood estimator. However, this estimation procedure depends on a regularization or tuning parameter a that needs to be selected. The aim of the present paper is to provide a way to optimally choose a by minimizing the approximate mean square error (AMSE) of the estimator. Following an approach similar to that of Donald and Newey (2001), we derive a higher-order expansion of the estimator from which we characterize the finite sample dependence of the AMSE on a. We propose to select the regularization parameter by minimizing an estimate of the AMSE. We show that this procedure delivers a consistent estimator of a. Moreover, the data-driven selection of the regularization parameter preserves the consistency, asymptotic normality, and efficiency of the CGMM estimator. Simulation experiments based on a CIR model show the relevance of the proposed approach.

Suggested Citation

  • Marine Carrasco & Rachidi Kotchoni, 2017. "Efficient Estimation Using the Characteristic Function," Post-Print hal-01386060, HAL.
  • Handle: RePEc:hal:journl:hal-01386060
    DOI: 10.1017/S0266466616000025
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Chaussé, 2011. "Generalized empirical likelihood for a continuum of moment conditions," Working Papers 1104, University of Waterloo, Department of Economics, revised Oct 2011.
    2. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    3. Yogo Purwono & Irwan Adi Ekaputra & Zaäfri Ananto Husodo, 2018. "Estimation of Dynamic Mixed Hitting Time Model Using Characteristic Function Based Moments," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 295-321, February.
    4. Manuel A. Domínguez & Ignacio N. Lobato, 2020. "Specification testing with estimated variables," Econometric Reviews, Taylor & Francis Journals, vol. 39(5), pages 476-494, May.
    5. Abootaleb Shirvani & Svetlozar T. Rachev & Frank J. Fabozzi, 2019. "Multiple Subordinated Modeling of Asset Returns," Papers 1907.12600, arXiv.org.
    6. Kotchoni, Rachidi, 2012. "Applications of the characteristic function-based continuum GMM in finance," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3599-3622.
    7. Pierre Chausse, 2017. "Regularized Empirical Likelihood as a Solution to the No Moment," Working Papers 1708, University of Waterloo, Department of Economics, revised Nov 2017.
    8. Jean-Jacques Forneron, 2019. "A Sieve-SMM Estimator for Dynamic Models," Papers 1902.01456, arXiv.org, revised Jan 2023.
    9. Philip, R., 2020. "Estimating permanent price impact via machine learning," Journal of Econometrics, Elsevier, vol. 215(2), pages 414-449.
    10. Arellano, Manuel & Hansen, Lars Peter & Sentana, Enrique, 2012. "Underidentification?," Journal of Econometrics, Elsevier, vol. 170(2), pages 256-280.
    11. Richard A. Davis & Thiago do Rêgo Sousa & Claudia Klüppelberg, 2021. "Indirect inference for time series using the empirical characteristic function and control variates," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 653-684, September.
    12. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.

    More about this item

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01386060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.