IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2013s-20.html
   My bibliography  Save this paper

Regularized LIML for many instruments

Author

Listed:
  • Guy Tchuente
  • Marine Carrasco

Abstract

The use of many moment conditions improves the asymptotic efficiency of the instrumental variables estimators. However, in finite samples, the inclusion of an excessive number of moments increases the bias. To solve this problem, we propose regularized versions of the limited information maximum likelihood (LIML) based on three different regularizations: Tikhonov, Landweber Fridman, and principal components. Our estimators are consistent and reach the semiparametric efficiency bound under some standard assumptions. We show that the regularized LIML estimator based on principal components possesses finite moments when the sample size is large enough. The higher order expansion of the mean square error (MSE) shows the dominance of regularized LIML over regularized two-staged least squares estimators. We devise a data driven selection of the regularization parameter based on the approximate MSE. A Monte Carlo study shows that the regularized LIML works well and performs better in many situations than competing methods. Two empirical applications illustrate the relevance of our estimators: one regarding the return to schooling and the other regarding the elasticity of intertemporal substitution.

Suggested Citation

  • Guy Tchuente & Marine Carrasco, 2013. "Regularized LIML for many instruments," CIRANO Working Papers 2013s-20, CIRANO.
  • Handle: RePEc:cir:cirwor:2013s-20
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2013s-20.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kapetanios, George & Marcellino, Massimiliano, 2010. "Factor-GMM estimation with large sets of possibly weak instruments," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.
    2. Carrasco, Marine & Florens, Jean-Pierre, 2014. "On The Asymptotic Efficiency Of Gmm," Econometric Theory, Cambridge University Press, vol. 30(2), pages 372-406, April.
    3. Motohiro Yogo, 2004. "Estimating the Elasticity of Intertemporal Substitution When Instruments Are Weak," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 797-810, August.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    6. Marine Carrasco & Guy Tchuente, 2016. "Efficient Estimation with Many Weak Instruments Using Regularization Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1609-1637, December.
    7. Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
    8. Whitney K. Newey & Frank Windmeijer, 2009. "Generalized Method of Moments With Many Weak Moment Conditions," Econometrica, Econometric Society, vol. 77(3), pages 687-719, May.
    9. Rui Castro & Gian Luca Clementi & Glenn Macdonald, 2009. "Legal Institutions, Sectoral Heterogeneity, and Economic Development," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(2), pages 529-561.
    10. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    11. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(6), pages 797-834, December.
    12. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    13. Patrik Guggenberger, 2008. "Finite Sample Evidence Suggesting a Heavy Tail Problem of the Generalized Empirical Likelihood Estimator," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 526-541.
    14. Canay, Ivan A., 2010. "Simultaneous selection and weighting of moments in GMM using a trapezoidal kernel," Journal of Econometrics, Elsevier, vol. 156(2), pages 284-303, June.
    15. Hausman, Jerry & Lewis, Randall & Menzel, Konrad & Newey, Whitney, 2011. "Properties of the CUE estimator and a modification with moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 45-57.
    16. Okui, Ryo, 2011. "Instrumental variable estimation in the presence of many moment conditions," Journal of Econometrics, Elsevier, vol. 165(1), pages 70-86.
    17. Dagenais, Marcel G. & Dagenais, Denyse L., 1997. "Higher moment estimators for linear regression models with errors in the variables," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 193-221.
    18. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    19. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    20. Kuersteiner, Guido M., 2012. "Kernel-weighted GMM estimators for linear time series models," Journal of Econometrics, Elsevier, vol. 170(2), pages 399-421.
    21. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    22. Jinyong Hahn & Atsushi Inoue, 2002. "A Monte Carlo Comparison Of Various Asymptotic Approximations To The Distribution Of Instrumental Variables Estimators," Econometric Reviews, Taylor & Francis Journals, vol. 21(3), pages 309-336.
    23. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    24. Bai, Jushan & Ng, Serena, 2010. "Instrumental Variable Estimation In A Data Rich Environment," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1577-1606, December.
    25. Carrasco, Marine, 2012. "A regularization approach to the many instruments problem," Journal of Econometrics, Elsevier, vol. 170(2), pages 383-398.
    26. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    27. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2008. "On the Asymptotic Optimality of the LIML Estimator with Possibly Many Instruments," CIRJE F-Series CIRJE-F-542, CIRJE, Faculty of Economics, University of Tokyo.
    28. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    29. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    30. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    31. Carrasco, Marine & Chernov, Mikhail & Florens, Jean-Pierre & Ghysels, Eric, 2007. "Efficient estimation of general dynamic models with a continuum of moment conditions," Journal of Econometrics, Elsevier, vol. 140(2), pages 529-573, October.
    32. Anderson, T.W., 2010. "The LIML estimator has finite moments!," Journal of Econometrics, Elsevier, vol. 157(2), pages 359-361, August.
    33. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    34. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 433-495.
    35. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2010. "On the asymptotic optimality of the LIML estimator with possibly many instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 191-204, August.
    36. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    37. Jinyong Hahn & Jerry Hausman, 2003. "Weak Instruments: Diagnosis and Cures in Empirical Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 118-125, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahul Singh, 2021. "Kernel Ridge Riesz Representers: Generalization, Mis-specification, and the Counterfactual Effective Dimension," Papers 2102.11076, arXiv.org, revised Jul 2024.
    2. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    3. Gareth Liu-Evans & Garry DA Phillips, 2023. "The Bias of the Modified Limited Information Maximum Likelihood Estimator (MLIML) in Static Simultaneous Equation Models," Working Papers 202303, University of Liverpool, Department of Economics.
    4. Guy Tchuente, 2016. "Estimation of social interaction models using regularization," Studies in Economics 1607, School of Economics, University of Kent.
    5. Joshua D. Angrist & Brigham Frandsen, 2022. "Machine Labor," Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 97-140.
    6. Berriel, Tiago & Medeiros, Marcelo C. & Sena, Marcelo J., 2016. "Instrument selection for estimation of a forward-looking Phillips Curve," Economics Letters, Elsevier, vol. 145(C), pages 123-125.
    7. Godzinski, Alexandre & Suarez Castillo, Milena, 2021. "Disentangling the effects of air pollutants with many instruments," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    8. Marine Carrasco & Guy Tchuente, 2016. "Efficient Estimation with Many Weak Instruments Using Regularization Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1609-1637, December.
    9. Marcellino, Massimiliano & Kapetanios, George & Khalaf, Lynda, 2015. "Factor based identification-robust inference in IV regressions," CEPR Discussion Papers 10390, C.E.P.R. Discussion Papers.
    10. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    11. N'Golo Kone, 2021. "Efficient mean-variance portfolio selection by double regularization," Working Paper 1453, Economics Department, Queen's University.
    12. Desjardins, Denise & Dionne, Georges & Koné, N’Golo, 2022. "Reinsurance demand and liquidity creation: A search for bicausality," Journal of Empirical Finance, Elsevier, vol. 66(C), pages 137-154.
    13. Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
    14. Guy Tchuente, 2019. "Weak Identification and Estimation of Social Interaction Models," Papers 1902.06143, arXiv.org.
    15. Marine Carrasco & Guy Tchuente, 2016. "Regularization Based Anderson Rubin Tests for Many Instruments," Studies in Economics 1608, School of Economics, University of Kent.
    16. N’Golo Koné, 2020. "Regularized Maximum Diversification Investment Strategy," Econometrics, MDPI, vol. 9(1), pages 1-23, December.
    17. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    18. Pierre Chausse, 2017. "Regularized Empirical Likelihood as a Solution to the No Moment," Working Papers 1708, University of Waterloo, Department of Economics, revised Nov 2017.
    19. Rahul Singh, 2020. "Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments," Papers 2012.10315, arXiv.org, revised Mar 2023.
    20. N'Golo Kone, 2021. "Regularized Maximum Diversification Investment Strategy," Working Paper 1450, Economics Department, Queen's University.
    21. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    22. Dakyung Seong, 2022. "Binary response model with many weak instruments," Papers 2201.04811, arXiv.org, revised Jun 2024.
    23. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marine Carrasco & Guy Tchuente, 2016. "Efficient Estimation with Many Weak Instruments Using Regularization Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1609-1637, December.
    2. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    3. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    4. Guy Tchuente, 2019. "Weak Identification and Estimation of Social Interaction Models," Papers 1902.06143, arXiv.org.
    5. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    7. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    8. Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
    9. Carrasco, Marine, 2012. "A regularization approach to the many instruments problem," Journal of Econometrics, Elsevier, vol. 170(2), pages 383-398.
    10. Guy Tchuente, 2016. "Estimation of social interaction models using regularization," Studies in Economics 1607, School of Economics, University of Kent.
    11. Yoonseok Lee & Yu Zhou, 2015. "Averaged Instrumental Variables Estimators," Center for Policy Research Working Papers 180, Center for Policy Research, Maxwell School, Syracuse University.
    12. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    13. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.
    14. Dakyung Seong, 2022. "Binary response model with many weak instruments," Papers 2201.04811, arXiv.org, revised Jun 2024.
    15. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    16. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    17. Anna Mikusheva & Liyang Sun, 2024. "Weak identification with many instruments," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages -28.
    18. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    19. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    20. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    21. Marine Carrasco & Guy Tchuente, 2016. "Regularization Based Anderson Rubin Tests for Many Instruments," Studies in Economics 1608, School of Economics, University of Kent.

    More about this item

    Keywords

    High-dimensional models; LIML; many instruments; MSE; regularization methods;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2013s-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.