IDEAS home Printed from
   My bibliography  Save this article

Instrumental Variable Estimation In A Data Rich Environment


  • Bai, Jushan
  • Ng, Serena


We consider estimation of parameters in a regression model with endogenous regressors. The endogenous regressors along with a large number of other endogenous variables are driven by a small number of unobservable exogenous common factors. We show that the estimated common factors can be used as instrumental variables and they are more efficient than the observed variables in our framework. Whereas standard optimal generalized method of moments estimator using a large number of instruments is biased and can be inconsistent, the factor instrumental variable estimator (FIV) is shown to be consistent and asymptotically normal, even if the number of instruments exceeds the sample size. Furthermore, FIV remains consistent even if the observed variables are invalid instruments as long as the unobserved common components are valid instruments. We also consider estimating panel data models in which all regressors are endogenous but share exogenous common factors. We show that valid instruments can be constructed from the endogenous regressors. Although single equation FIV requires no bias correction, the faster convergence rate of the panel estimator is such that a bias correction is necessary to obtain a zero-centered normal distribution.

Suggested Citation

  • Bai, Jushan & Ng, Serena, 2010. "Instrumental Variable Estimation In A Data Rich Environment," Econometric Theory, Cambridge University Press, vol. 26(06), pages 1577-1606, December.
  • Handle: RePEc:cup:etheor:v:26:y:2010:i:06:p:1577-1606_99

    Download full text from publisher

    File URL:
    File Function: link to article abstract page
    Download Restriction: no

    References listed on IDEAS

    1. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    2. Linton, Oliver, 2001. "ESTIMATING ADDITIVE NONPARAMETRIC MODELS BY PARTIAL Lq NORM: THE CURSE OF FRACTIONALITY," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1037-1050, December.
    3. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    4. Hengartner, Nicolas W. & Sperlich, Stefan, 2005. "Rate optimal estimation with the integration method in the presence of many covariates," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 246-272, August.
    5. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    6. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
    7. Peng, Liang & Yao, Qiwei, 2003. "Least absolute deviations estimation for ARCH and GARCH models," LSE Research Online Documents on Economics 5828, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:26:y:2010:i:06:p:1577-1606_99. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.